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Review

I We reviewed several variants of RDD in the previous class.
I We have fuzzy RDD when the treatment is not a deterministic

function of the running variable.
I It can be analyzed as in the setting with instrumental variables.
I When the growth rate of the outcome and the treatment

changes across the cutoff, we have the kink design.
I The running variable could be multi-dimensional or discrete.
I It is possible to generalize the RDD estimate when there are

multiple cutoffs.
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What is unique about panel data?

I In a typical panel dataset, each unit i ∈ {1, 2, . . . ,N} is
observed for T periods.

I We know the outcome Yit , treatment status Dit , and some
covariates Xit .

I We use Ui to denote unobservable time-invariant confounders.
I We use superscript to denote the history of a variable: Ys:t

i .
I When T is short and N is large, we call it panel data; when T

is long and N is moderate, we call it time-series cross-sectional
(TSCS) data or long panel data.

I Household survey over three years vs. country-level data over
fifty years.

I In panel data, asymptotics relies on a large N; in TSCS data,
both N and T grow to infinity.

I It is known as longitudinal data in other disciplines.
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What is unique about panel data?
I Why don’t we just use the classical estimators (regression,

weighting, AIPW, etc.)?
I The dynamic structure allows us to relax the identification

assumption,
I SUTVA might be violated,
I Observations are dependent.

I In panel data, SUTVA means

Yit =
{
Yit(0), Dit = 0
Yit(1), Dit = 1.

I The individualistic treatment effect τit = Yit(1)− Yit(0).
I SUTVA excludes the existence of anticipation or dynamic

treatment effect: Yit = Yit(Dit) = Yit(D1:T
i ).

I It implies that D1:(t−1)
i will not be confounders.

I Remember that treatment effect heterogeneity means
τit = τt(X1:t

i ,Ui ).
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Identification in panel data

I In the cross-sectional setting, we need unconfoundedness:

Di ⊥ {Yi (0),Yi (1)}|Xi .

I In panel data, we observe the history of each variable, hence
the weakest assumption will be

Dit ⊥ {Yit(0),Yit(1)}|Y1:(t−1)
i ,X1:t

i ,Ui .

I It is too weak for identification.
I In practice, people strengthen the assumption along two

different directions.
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Identification in panel data

I Sequential ignorability:

Dit ⊥ {Yit(0),Yit(1)}|Y1:(t−1)
i ,X1:t

i .

I It prevents unobservable confounders from affecting treatment
assignment: P(Dit = 1) = gt(Y1:(t−1)

i ,X1:t
i ).

I Strict exogeneity:

Dit ⊥ {Yis(0),Yis(1)}|X1:t
i ,Ui ,

I It prevents the outcome history from affecting treatment
assignment: P(Dit = 1) = gt(X1:t

i ,Ui ).
I We always require ε < gt(·) < 1− ε.
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Ideal experiment behind the assumptions

I The two assumptions are based upon two different ideal
experiments.

I Under sequential ignorability, the experimenter adjusts the
probability of being treated for any unit dynamically based on
the observed outcome.

I On Feb. 14, your probability of being vaccinated is 0.72 if you
are an old Asian male who have not been infected by Covid.

I Data available to the analyst include each unit’s observable
attributes, health status (outcome), and treatment status over
time.

I The experimenter observes the same data.
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Ideal experiment behind the assumptions

I Under strict exogeneity, the experimenter knows all the
unobservable attributes and specifies gt(·) in a “pre-analysis
plan” without conditioning on the outcome.

I It is known as “baseline randomization”.
I On Feb. 14, your probability of being vaccinated is 0.72 if you

are an old Asian male who loves tequila.
I Data available to the analyst do not include the unobservable

attributes.
I The experimenter possesses more information than the analyst.
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Ideal experiments behind the two assumptions

I Under sequential ignorability, the analyst observes all the
variables that may affect treatment assignment.

I The remaining task is to infer the probability of being treated.
I All the methods we have learned can still be applied with some

modifications.
I Under strict exogeneity, we have the problem of omitted

variables as some confounders (Ui) are unobservable.
I In this case, it is usually more challenging to infer the treatment

assignment mechanism than to model the outcome variable.
I The outcome has a larger variation, which allows us to test the

validity of the outcome model.
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Estimation under strict exogeneity
I Note that the strict exogeneity assumption is justified by the

following outcome model:

Yit = mt(Dit ,X1:t
i ,Ui ) + εit

E [εis |Dit ,Xit ,Ui ] = 0,

which is still too general for identification.
I In practice, we impose structural restrictions to simplify the

model.
I Only contemporary values of X are confounders:

Yit = mt(Dit ,Xit ,Ui ) + εit .

I The effects of X and U are additive:

Yit = τitDit + ft(Xit) + ht(Ui ) + εit .

I X affect Y in a linear manner and ht(Ui ) has a
low-dimensional representation.
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Estimation under strict exogeneity

I For example, we can assume that ht(Ui ) = µ+ αi + ξt , then

Yit = µ+ τitDit + Xitβ + αi + ξt + εit .

I This is the two-way fixed effects (TWFE) model with
heterogeneous treatment effects.

I αi and ξt are known as unit and period fixed effects.
I Now, the assumption of strict exogeneity becomes:

E [εis |Dit ,Xit , αi , ξt ] = 0 for any s.
I The classical TWFE model further assumes that the treatment

effect is homogeneous:

Yit = µ+ τDit + Xitβ + αi + ξt + εit .
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Estimation of the TWFE model

I Suppose we know the values of αi and ξt , then we can
estimate τ and β with OLS as in classic regression.

I But neither is known in practice.
I We have more than one observation of each unit and each

period, hence eliminating αi and ξt becomes possible.
I We need to impose two extra conditions for identification:

T∑
t=1

ξt = 0,
N∑

i=1
αi = 0.

I These conditions specify the reference point of αi and ξt and
are not unique.
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Estimation of the two-way fixed effects model

I For any random variable Yit , let’s define

Ȳi . = 1
T

T∑
t=1

Yit , Ȳ.t = 1
N

N∑
i=1

Yit , and Ȳ = 1
NT

N∑
i=1

T∑
t=1

Yit

I Note that
Ȳi . = µ+ τ D̄i . + X̄i .β + αi + ε̄i .

I We subtract the equation above from the TWFE model, and
obtain

Yit − Ȳi . = τ(Dit − D̄i .) + (Xit − X̄i .)β + ξt + εit − ε̄i .

I We have eliminated αi from the outcome model.
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Estimation of the TWFE model

I Similarly, we have

Ȳ.t = µ+ τ D̄.t + X̄.tβ + ξt + ε̄.t

I Subtracting it from the previous equation, we have

Yit − Ȳi . − Ȳ.t = −µ+ τ(Dit − D̄i . − D̄.t)
+ (Xit − X̄i . − X̄.t)β + εit − ε̄i . − ε̄.t

I This looks like a classical regression regression except for −µ.
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Estimation of the TWFE model

I To eliminate −µ, note that

Ȳ = µ+ τ D̄ + X̄β + ε̄.

I We add this equation back to the previous one, and obtain

Yit − Ȳi . − Ȳ.t + Ȳ = τ(Dit − D̄i . − D̄.t + D̄)
+ (Xit − X̄i . − X̄.t + X̄)β + εit − ε̄i . − ε̄.t + ε̄.
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Estimation of the TWFE model

I Define
Ỹit = Yit − Ȳi . − Ȳ.t + Ȳ
D̃it = Dit − D̄i . − D̄.t + D̄
X̃it = Xit − X̄i . − X̄.t + X̄
ε̃it = εit − ε̄i . − ε̄.t + ε̄.

I Then the previous equation can be written as

Ỹit = τ D̃it + X̃itβ + ε̃it .

I Note that E [ε̃it |D̃it , X̃it ] = 0 due to strict exogeneity.
I Both τ and β can be estimated via OLS.
I This is known as the within estimator for the TWFE model.
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Inference of the TWFE model

I In panel data, it is common to assume that the error terms are
correlated within units (over periods) but not between units.

I The variance of
(
τ̂

β̂

)
takes the familiar sandwich form:

Var
(
τ̂

β̂

)
= (X†′X†)−1(X†ε̃ε̃′X†′)(X†′X†)−1,

where X† = (D̃, X̃).
I The variance can be estimated by either some

heteroscedasticity and auto-correlation (HAC) consistent
variance estimator or block bootstrap.

I In practice, blocks may differ from units (e.g., provinces
vs. individuals).
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Inference of the TWFE model

I Moreover, as N →∞

τ̂ − τ√
Var(τ̂)

→ N(0, 1)

if the correlation between the random errors is weak.
I Therefore, we can easily construct the 95% confidence interval

for τ̂ .
I In block bootstrap, we resample the units rather than the

observations.

18 / 24



TWFE models: application

I We use the study in Hainmueller and Hangartner (2019) for
illustration.

I They studied the impacts of indirect democracy on
naturalization of immigrants in Swiss municipalities.

I There are 1, 211 municipalities over 19 years.
I The treatment indicator equals 1 if the municipality relies on

elected officials rather than popular referendums for
naturalization decisions.

I The outcome is naturalization rate of municipality i in year t.
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TWFE models: application

I Conventionally, we can estimate the model via the package plm
in R.

## The TWFE estimate is 1.339325

## The SE estimate is 0.1863711
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TWFE models: application

I A more modern approach is to use the fixest package.

## OLS estimation, Dep. Var.: nat_rate_ord
## Observations: 22,971
## Fixed-effects: bfs: 1,209, year: 19
## Standard-errors: Clustered (bfs)
## Estimate Std. Error t value Pr(>|t|)
## indirect 1.33932 0.186525 7.18039 1.2117e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 4.09541 Adj. R2: 0.152719
## Within R2: 0.005173

21 / 24



Caveats of the TWFE models
I Note how many assumptions we need for the model to work!

I SUTVA,
I Strict exogeneity,
I Correct model specification,
I Homogeneous treatment effect.

I Suppose the first three assumptions are satisfied but the
treatment effects are heterogeneous.

I Following the same logic in Aronow and Samii (2016), we can
show that

τ̂ →
∑

Dit=1
witτit ,with

∑
Dit=1

wit = 1.

I Even worse, some wit can be negative (Chaisemartin and
D’Haultfœuille 2020).

I It means that τ̂ is not a convex combination of τit .
I τ̂ may not be representative of τit at all.
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Caveats of the TWFE models

I In reality, SUTVA is often violated as dynamic treatment
effects (or carryover) are common (Imai and Kim 2019).

I Treatment assignment can be affected by both the
unobservable confounders and the outcome history (feedback).

I ht(Ui ) can be more complicated than µ+ αi + ξt .
I We say that treatment assignment follows the structure of

staggered adoption if Dit = 1, then Dis = 1 for any s > t.
I Once a unit is treated, it will always be under treatment.
I Many caveats are avoided under staggered adoption.
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