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Review

We have reviewed basic properties of the OLS estimator.
Suppose the regression model is correct, then it is unbiased and
consistent.

The EHW variance estimator is consistent for the true variance
even under heteroscedasticity.

There are multiple variants of the variance estimator.

The coefficients will converge to the normal distribution at the
root-N rate.

It enables us to test linear hypothesis.

But the confidence interval suffers from the Behrens—Fisher
problem.
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Regression and causality

» We often analyze experimental data with the OLS estimator.

» Now D; is a binary variable.

» The Neyman-Rubin model does not justify either a linear
relationship between D; and Y; or a constant treatment effect.

» Then, does it make sense to rely on the OLS estimator?

» |Is Tors consistent for TsaTe?

» If so, does Va\r[%OLs] quantify the uncertainty of 7o, s relative
to 7saTE?



Regression and causality

» Luckily, the answers are yes and yes (Samii and Aronow 2012).
> Let's use the matrix representation of the OLS estimator:
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» Therefore, %OLS = %HA!



Regression and causality
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In general, if the probability of being treated equals p; for unit
i, the Hajek estimator has the form

. xMNiDYi/p SNA(1-D)Yi/(1—pi)
¥, Di/pi YL (1-D)/(1-p)

THA =
It is equivalent to the weighted least squares (WLS) estimator
based on

Yi=p+71Di+ ¢,

with the weight W; = 2t 4 1=0:.
We can further prove that the Neyman variance estimator is
exactly the same as the HC2 variance estimator in regression.

> We can estimate the ATE in experiments using regression.

However, the Behrens—Fisher problem persists!



Regression and causality
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Remember that under the Bernoulli trial, the Hajek estimator is
biased.
But the Hajek estimator is identical to the OLS estimator.

» And we proved that the OLS estimator is unbiased!

We can see that

Y; =D;Y;i(1) + (1 — Dy)Y;(0)
=Yi(0) + 7;D;
=Y(0) + 7D; + Y;(0) — Y(0) + (71 — 7)D;.

We have the regression model when setting ;1 = Y(0) and

i = Yi(0) — Y(0) + (1, — 7)D;.

But in any finite sample, Y;(0) and 7; are fixed numbers, hence
E[Yi(0) = Y(0) + (i — 7)DiID; = d] =

Y:(0) — Y(0) + (; — 7)d # 0.

The assumption holds when N is infinite, where the Hajek
estimator is indeed unbiased.
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Regression and causality
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## The SATE is 2.49386
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Regression and causality

## The
## The
## The

## The

HA estimate is 2.390017
OLS estimate is 2.390017
HA SE estimate is 0.3267862

OLS SE estimate is 0.3267862
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Regression as projection
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Suppose D; is continuous rather than binary.

The effect may vary by the dosage of D;.

Yet the regression model assumes that the effect is constant.
The regression estimate usually does not have a causal
interpretation.

It can be understood as a projection.

The following is always correct due to Taylor expansion:

Yi:,UJ+7'1D,'—|-7'2D;2—|----—|—TkD;<—|—-"—|—€,',
E[6,|D,]:0

The OLS estimator now provides the best linear approximation
of the conditional expectation E[Y;|D;].



Regression as projection
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Covariate adjustment

» We often want to control for variables other than the
treatment in regression and fit the following model:

Y; =pu+1Di + X8 + ¢,

» Two reasons: 1. gain efficiency; 2. investigate heterogeneity in
treatment effects.

> The first reason is justified if the outcome is linear in the
regressors.

> We can understand this point through the Frisch-Waugh-Lovell
(FWL) theorem.
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Covariate adjustment

» We can get the OLS estimate 7 via the following algorithm:
» Regress Y; on X; and save the residuals £y;;
» Regress D; on X; and save the residuals £p;;
» Regress £y; on £p; and save the coefficients.
» The coefficient for £p; will be 7.
> Intuitively, we tease out the influence of X; on Y; and D;
separately to isolate the partial effect of D; on Y;.
» If the influence of X; on Y; and D; is linear, then it is
guaranteed that controlling X; increases efficiency.
» Otherwise, we may increase the standard errors of 7 by doing
so (Freedman 2008).



Proof of the FWL theorem

» Let's write the regression model as
Y=7D+ X3 +e.
» Then, we multiply Q = I — X(X’X)~1X’ to both sides and get

QY =7QD + QX5 + Q¢
=7QD + &.

» The theorem is proved since QY = £y and QD = £ép.
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Covariate adjustment

» Fortunately, there is a solution proposed by Lin (2013)!
» We estimate the following model instead:

Yi = p+7D; + (X; — X)B + 6D; x (X; — X) + ¢,

» It has two features: 1) demeaned covariates, and 2) interaction
between the treatment and the covariates.

» Lin proved that this approach always reduces the standard error
of 7!

» We should always use Lin’s regression in experimental analysis.
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Covariate adjustment

>

Intuitively, we use the deviation of the covariates to predict the
deviation of the outcome.
Note that the model is “correct” when X; = X.

> Bias caused by misspecification becomes local and negligible in

> We take a sample of 100 leaves, calculating the sample average.
The estimate is unbiased and consistent; yet we can do better.

variance estimation.
Suppose we want to measure the average surface area of a
large population of leaves (e.g., 10000).

» We know that the weight of each leave is correlated with its

surface area.

Hence, we should measure the weight of each leave in the
sample and the average weight of all the leaves in the
population.

We predict the average surface area of leaves in the population
using the sample average plus the deviation of the population
average weight from the sample average weight.
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Covariate

##

##

##

##

##

##

The

The

The

The

The

The

adjustment

OLS estimate is 2.555211

naive regression estimate is 3.220927
Lin regression estimate is 3.054441

OLS SE estimate is 0.3218431

naive regression SE estimate is 0.281957

Lin regression SE estimate is 0.2837128
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Model-assisted causal inference

v

Lin's regression is a good example of what we call

“model-assisted causal inference.”

» Is Y; or D; linear in X;? Probably not.

» Under the conventional perspective, our model is misspecified
hence we should be in trouble.

> Yet we can still use this linear specification to obtain consistent
estimate of the target parameter.

» Causal identification is ensured by the fact that D; is randomly
assigned.

» The linear model just assists us to increase the efficiency of the

estimator.
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Regression: a high-level perspective

» The OLS estimator 3 = (X’X)~1(XY) is equivalent to finding
the projection of Y in the Hilbert space spanned by X.
y
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Regression: a high-level perspective

» We can make the space more complex (thus more realistic) by
transforming X.

» For example, we replace (1, x;) with (1,x;,x?, ..., ,xX).

» Now, we are in the realm of nonparametric regression.

» Denoting the matrix of transformed regressors as X, then we
still have the OLS estimator 3 = (X'X)~1(XY).

» There are different approaches of transforming X, each
representing a unique Hilbert space.

» Elements in X constitute bases of the Hilbert space.

» Compared with the space spanned by X, the space spanned by
X can grow with the sample size.

> Therefore, when N — oo, we expect ¥ = X(X'X)~1(XY) to
converge to E[Y|X] without the linear form.

» But the identification assumption is still crucial.
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Misconceptions about regression

We can say more about the OLS estimator under stricter
restrictions on model specification.

E.g., the Gauss-Markov theorem: the OLS estimator 3 has the
smallest variance among all the linear unbiased estimators for 3
if

Y =X3 +¢,
E[E,’|X,’] = 0,
E[e?|X;] = o2

Therefore, the OLS estimator is known as the best linear
unbiased estimator (BLUE).

But the conditions for the theorem to hold are too strong to be
realistic.



Misconceptions about regression

>

The convention also includes tests for the correct specification,
such as homoscedasticity.

If you believe in the existence of a true regression model, then
heteroscedasticity is concerning (King and Roberts 2015).

But in experiments, heteroscedasticity always exists when
treatment effects are heterogeneous (Aronow 2016).

The existence of a “true model” is probably wishful thinking.
There are also methods that help you detect the “correct
specification” by examining the fitness (R? plus a penalty term)
of the model (AIC, BIC, etc.).

But we care about the accuracy of estimating 7 rather than
maximizing fitness.

When regression is used for prediction, we should minimize the
mean squared error (MSE) on a test set:

MSE = E[Y; — X,)?

Machine learning (ML) algorithms can do a better job.
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