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Review

I We have reviewed basic properties of the OLS estimator.
I Suppose the regression model is correct, then it is unbiased and

consistent.
I The EHW variance estimator is consistent for the true variance

even under heteroscedasticity.
I There are multiple variants of the variance estimator.
I The coefficients will converge to the normal distribution at the

root-N rate.
I It enables us to test linear hypothesis.
I But the confidence interval suffers from the Behrens–Fisher

problem.
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Regression and causality

I We often analyze experimental data with the OLS estimator.
I Now Di is a binary variable.
I The Neyman-Rubin model does not justify either a linear

relationship between Di and Yi or a constant treatment effect.
I Then, does it make sense to rely on the OLS estimator?
I Is τ̂OLS consistent for τSATE?
I If so, does V̂ar [τ̂OLS ] quantify the uncertainty of τ̂OLS relative

to τSATE?
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Regression and causality

I Luckily, the answers are yes and yes (Samii and Aronow 2012).
I Let’s use the matrix representation of the OLS estimator:(

µ̂
τ̂

)
= (X′X)−1(XY)

=
(

N N1
N1 N1

)−1( ∑N
i=1 Yi∑N

i=1 DiYi

)

=
( 1

N0
− 1

N0
− 1

N0
N

N0N1

)( ∑N
i=1 Yi∑N

i=1 DiYi

)

=


∑N

i=1(1−Di )Yi
N0∑N

i=1 Di Yi
N1

−
∑N

i=1(1−Di )Yi
N0

 .
I Therefore, τ̂OLS = τ̂HA!
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Regression and causality

I In general, if the probability of being treated equals pi for unit
i , the Hajek estimator has the form

τ̂HA =
∑N

i=1 DiYi/pi∑N
i=1 Di/pi

−
∑N

i=1(1− Di )Yi/(1− pi )∑N
i=1(1− Di )/(1− pi )

I It is equivalent to the weighted least squares (WLS) estimator
based on

Yi = µ+ τDi + εi ,

with the weight Wi = Di
pi

+ 1−Di
1−pi

.
I We can further prove that the Neyman variance estimator is

exactly the same as the HC2 variance estimator in regression.
I We can estimate the ATE in experiments using regression.
I However, the Behrens–Fisher problem persists!
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Regression and causality
I Remember that under the Bernoulli trial, the Hajek estimator is

biased.
I But the Hajek estimator is identical to the OLS estimator.
I And we proved that the OLS estimator is unbiased!
I We can see that

Yi =DiYi (1) + (1− Di )Yi (0)
=Yi (0) + τiDi

=Ȳ (0) + τDi + Yi (0)− Ȳ (0) + (τi − τ)Di .

I We have the regression model when setting µ = Ȳ (0) and
εi = Yi (0)− Ȳ (0) + (τi − τ)Di .

I But in any finite sample, Yi (0) and τi are fixed numbers, hence
E [Yi (0)− Ȳ (0) + (τi − τ)Di |Di = d ] =
Yi (0)− Ȳ (0) + (τi − τ)d 6= 0.

I The assumption holds when N is infinite, where the Hajek
estimator is indeed unbiased.

6 / 22



Regression and causality
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## The SATE is 2.49386
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Regression and causality

## The HA estimate is 2.390017

## The OLS estimate is 2.390017

## The HA SE estimate is 0.3267862

## The OLS SE estimate is 0.3267862
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Regression as projection

I Suppose Di is continuous rather than binary.
I The effect may vary by the dosage of Di .
I Yet the regression model assumes that the effect is constant.
I The regression estimate usually does not have a causal

interpretation.
I It can be understood as a projection.
I The following is always correct due to Taylor expansion:

Yi = µ+ τ1Di + τ2D2
i + · · ·+ τkDk

i + · · ·+ εi ,

E [εi |Di ] = 0.

I The OLS estimator now provides the best linear approximation
of the conditional expectation E [Yi |Di ].

9 / 22



Regression as projection
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Covariate adjustment

I We often want to control for variables other than the
treatment in regression and fit the following model:

Yi = µ+ τDi + X′iβ + εi ,

I Two reasons: 1. gain efficiency; 2. investigate heterogeneity in
treatment effects.

I The first reason is justified if the outcome is linear in the
regressors.

I We can understand this point through the Frisch-Waugh-Lovell
(FWL) theorem.
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Covariate adjustment

I We can get the OLS estimate τ̂ via the following algorithm:
I Regress Yi on Xi and save the residuals ε̂Yi ;
I Regress Di on Xi and save the residuals ε̂Di ;
I Regress ε̂Yi on ε̂Di and save the coefficients.

I The coefficient for ε̂Di will be τ̂ .
I Intuitively, we tease out the influence of Xi on Yi and Di

separately to isolate the partial effect of Di on Yi .
I If the influence of Xi on Yi and Di is linear, then it is

guaranteed that controlling Xi increases efficiency.
I Otherwise, we may increase the standard errors of τ̂ by doing

so (Freedman 2008).
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Proof of the FWL theorem

I Let’s write the regression model as

Y = τD + Xβ + ε.

I Then, we multiply Q = I− X(X′X)−1X′ to both sides and get

QY =τQD + QXβ + Qε
=τQD + ε̃.

I The theorem is proved since QY = ε̂Y and QD = ε̂D.
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Covariate adjustment

I Fortunately, there is a solution proposed by Lin (2013)!
I We estimate the following model instead:

Yi = µ+ τDi + (X′i − X̄)β + δDi ∗ (X′i − X̄) + εi ,

I It has two features: 1) demeaned covariates, and 2) interaction
between the treatment and the covariates.

I Lin proved that this approach always reduces the standard error
of τ̂ !

I We should always use Lin’s regression in experimental analysis.
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Covariate adjustment
I Intuitively, we use the deviation of the covariates to predict the

deviation of the outcome.
I Note that the model is “correct” when Xi = X̄.
I Bias caused by misspecification becomes local and negligible in

variance estimation.
I Suppose we want to measure the average surface area of a

large population of leaves (e.g., 10000).
I We take a sample of 100 leaves, calculating the sample average.
I The estimate is unbiased and consistent; yet we can do better.
I We know that the weight of each leave is correlated with its

surface area.
I Hence, we should measure the weight of each leave in the

sample and the average weight of all the leaves in the
population.

I We predict the average surface area of leaves in the population
using the sample average plus the deviation of the population
average weight from the sample average weight.
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Covariate adjustment

## The OLS estimate is 2.555211

## The naive regression estimate is 3.220927

## The Lin regression estimate is 3.054441

## The OLS SE estimate is 0.3218431

## The naive regression SE estimate is 0.281957

## The Lin regression SE estimate is 0.2837128
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Model-assisted causal inference

I Lin’s regression is a good example of what we call
“model-assisted causal inference.”

I Is Yi or Di linear in Xi? Probably not.
I Under the conventional perspective, our model is misspecified

hence we should be in trouble.
I Yet we can still use this linear specification to obtain consistent

estimate of the target parameter.
I Causal identification is ensured by the fact that Di is randomly

assigned.
I The linear model just assists us to increase the efficiency of the

estimator.
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Regression: a high-level perspective

I The OLS estimator β̂ = (X′X)−1(XY) is equivalent to finding
the projection of Y in the Hilbert space spanned by X.

18 / 22



Regression: a high-level perspective

I We can make the space more complex (thus more realistic) by
transforming X.

I For example, we replace (1, xi ) with (1, xi , x2
i , . . . , , xK

i ).
I Now, we are in the realm of nonparametric regression.
I Denoting the matrix of transformed regressors as X̃, then we

still have the OLS estimator β̂ = (X̃′X̃)−1(X̃Y).
I There are different approaches of transforming X, each

representing a unique Hilbert space.
I Elements in X̃ constitute bases of the Hilbert space.
I Compared with the space spanned by X, the space spanned by

X̃ can grow with the sample size.
I Therefore, when N →∞, we expect Ŷ = X̃(X̃′X̃)−1(X̃Y) to

converge to E [Y |X] without the linear form.
I But the identification assumption is still crucial.
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Misconceptions about regression

I We can say more about the OLS estimator under stricter
restrictions on model specification.

I E.g., the Gauss-Markov theorem: the OLS estimator β̂ has the
smallest variance among all the linear unbiased estimators for β
if

Y = Xβ + ε,

E [εi |Xi ] = 0,
E [ε2

i |Xi ] = σ2.

I Therefore, the OLS estimator is known as the best linear
unbiased estimator (BLUE).

I But the conditions for the theorem to hold are too strong to be
realistic.
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Misconceptions about regression
I The convention also includes tests for the correct specification,

such as homoscedasticity.
I If you believe in the existence of a true regression model, then

heteroscedasticity is concerning (King and Roberts 2015).
I But in experiments, heteroscedasticity always exists when

treatment effects are heterogeneous (Aronow 2016).
I The existence of a “true model” is probably wishful thinking.
I There are also methods that help you detect the “correct

specification” by examining the fitness (R2 plus a penalty term)
of the model (AIC, BIC, etc.).

I But we care about the accuracy of estimating τ rather than
maximizing fitness.

I When regression is used for prediction, we should minimize the
mean squared error (MSE) on a test set:

MSE = E [Yi − X′iβ]2

I Machine learning (ML) algorithms can do a better job.
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