Panel Data Analysis II

Ye Wang University of North Carolina at Chapel Hill

Linear Methods in Causal Inference POL1784

Review

- In the previous class, we discussed the uniqueness of panel data and how it allows us to relax the identification assumption.
- Two common assumptions: sequential ignorability and strict exogeneity.
- They are based on different ideal experiments.
- Under strict exogeneity, we must impose structural restrictions on the DGP.
- Then, we can rely on the TWFE model and the within estimator to estimate the causal effect.

- Suppose there are only two periods, 1 and 2.
- ► There are N₁ units in the treatment group (i ∈ T) and N₀ in the control group (i ∈ C).
- ▶ D_{it} = 0 in period 1 for any i and D_{it} = 1 in period 2 only for units in the treatment group:

$$Y_{it} = egin{cases} Y_{it}(1), ext{ if } i \in \mathcal{T} ext{ and } t = 2 \ Y_{it}(0), ext{ otherwise} \end{cases}$$

• We maintain the assumptions for the TWFE model:

$$\begin{aligned} \mathbf{Y}_{it} &= \mu + \tau D_{it} + \alpha_i + \xi_t + \varepsilon_{it}, \\ E[\varepsilon_{is}|D_{it}, \alpha_i, \xi_t] &= 0 \text{ for any } s. \end{aligned}$$

• There exists a simpler estimator for au in this case

Note that strict exogeneity implies the following:

$$E[Y_{i2}(0) - Y_{i1}(0)|i \in \mathcal{T}]$$

= $E[\mu + \alpha_i + \xi_2 + \varepsilon_{i2} - (\mu + \alpha_i + \xi_1 + \varepsilon_{i1})|i \in \mathcal{T}]$
= $\xi_2 - \xi_1$
= $E[Y_{i2}(0) - Y_{i1}(0)|i \in \mathcal{C}].$

- This assumption is known as "parallel trends".
- It means that without the treatment, the increase (trend) in the outcome would be the same across the two groups.
- Strict exogeneity is a sufficient condition for parallel trends to hold.
- This assumption implies that

$$E[Y_{i2}(0)|i \in \mathcal{T}] \\= E[Y_{i1}(0)|i \in \mathcal{T}] + E[Y_{i2}(0)|i \in \mathcal{C}] - E[Y_{i1}(0)|i \in \mathcal{C}].$$

► Therefore,

$$\begin{aligned} \tau = & E[Y_{i2}(1) - Y_{i2}(0)|i \in \mathcal{T}] \\ = & E[Y_{i2}(1)|i \in \mathcal{T}] - E[Y_{i2}(0)|i \in \mathcal{T}] \\ = & E[Y_{i2}(1)|i \in \mathcal{T}] - E[Y_{i1}(0)|i \in \mathcal{T}] \\ & - (E[Y_{i2}(0)|i \in \mathcal{C}] - E[Y_{i1}(0)|i \in \mathcal{C}]) \\ = & E[Y_{i2}|i \in \mathcal{T}] - E[Y_{i1}|i \in \mathcal{T}] \\ & - (E[Y_{i2}|i \in \mathcal{C}] - E[Y_{i1}|i \in \mathcal{C}]) \end{aligned}$$

• In practice, we estimate τ by

$$\hat{\tau}_{DID} = \frac{1}{|\mathcal{T}|} \sum_{i \in \mathcal{T}} Y_{i2} - \frac{1}{|\mathcal{T}|} \sum_{i \in \mathcal{T}} Y_{i1} - \left(\frac{1}{|\mathcal{C}|} \sum_{i \in \mathcal{C}} Y_{i2} - \frac{1}{|\mathcal{C}|} \sum_{i \in \mathcal{C}} Y_{i1}\right).$$

- ▶ This is known as the difference-in-differences (DID) estimator.
- ▶ We first take the within-unit difference for each *i*, and then take another difference between the two average differences.
- The estimator is motivated by the TWFE model with homogeneous treatment effects.
- But it is robust to heterogeneous treatment effects.
- Let's assume that parallel trends holds and denote

$$au_{it} = Y_{it}(1) - Y_{it}(0)$$

 $au_{ATT,t} = E[au_{it}|i \in \mathcal{T}].$

We can show that

$$E[\hat{\tau}_{DID}] = E[Y_{i2}(1) - Y_{i2}(0)|i \in \mathcal{T}] = \tau_{ATT,2}.$$

• Moreover,
$$\hat{\tau}_{DID} = \hat{\tau}_{TWFE}$$
.

Validate parallel trends

- As an estimator, DID requires only parallel trends rather than strict exogeneity.
- The assumption allows us to impute the conterfactual for the treated observations.
- ▶ It is not directly testable since the definition involves $E[Y_{i2}(0)|i \in T]$, which is not observable.
- But we can test its validity indirectly.
- Suppose we have another pre-treatment period, period 0.
- If the trends are parallel between periods 1 and 2, it is reasonable to expect them to be parallel between 0 and 1:

$$E[Y_{i1}(0)|i \in \mathcal{T}] - E[Y_{i0}(0)|i \in \mathcal{T}] \\= E[Y_{i1}(0)|i \in \mathcal{C}] - E[Y_{i0}(0)|i \in \mathcal{C}].$$

In finite sample, it implies that

$$\frac{1}{|\mathcal{T}|}\sum_{i\in\mathcal{T}}Y_{i1} - \frac{1}{|\mathcal{T}|}\sum_{i\in\mathcal{T}}Y_{i0} - \left(\frac{1}{|\mathcal{C}|}\sum_{i\in\mathcal{C}}Y_{i1} - \frac{1}{|\mathcal{C}|}\sum_{i\in\mathcal{C}}Y_{i0}\right) \approx 0.$$

Validate parallel trends

 Parallel trends may be more plausible once we focus on a smaller group:

$$E[Y_{i2}(0) - Y_{i1}(0)|i \in \mathcal{T}, \mathbf{X}_i = \mathbf{x}] \\= E[Y_{i2}(0) - Y_{i1}(0)|i \in \mathcal{C}, \mathbf{X}_i = \mathbf{x}].$$

- This is known as "conditional parallel trends".
- Let's define $D_i = \mathbf{1}\{i \in \mathcal{T}\}$ and $\Delta Y_i(D_i) = Y_{i2}(D_i) Y_{i1}(D_i)$.
- The condition that E[∆Y_i(0)|D_i = 1, X_i = x] = E[∆Y_i(0)|D_i = 0, X_i = x] is similar to unconfoundedness.
- It is sufficient for identifying the ATT via the IPW estimators:

$$\hat{\tau}_{SDID} = \frac{1}{|\mathcal{T}|} \sum_{i \in \mathcal{T}} \Delta Y_i - \frac{1}{|\mathcal{C}|} \sum_{i \in \mathcal{C}} \frac{\hat{g}(\mathbf{X}_i) \Delta Y_i}{1 - \hat{g}(\mathbf{X}_i)}.$$

This is the semiparametric DID estimator in Abadie (2005).

Multi-period DID

- We can extend the analysis to datasets with multiple periods.
- Suppose there are T₀ pre-treatment periods and T₁ post-treatment periods.
- For any $t \geq T_0 + 1$,

$$egin{aligned} \widehat{ au}_{DID,t} &= rac{1}{|\mathcal{T}|}\sum_{i\in\mathcal{T}}Y_{it} - rac{1}{|\mathcal{T}|}\sum_{i\in\mathcal{T}}\sum_{s=1}^{T_0}Y_{is} \ &- \left(rac{1}{|\mathcal{C}|}\sum_{i\in\mathcal{C}}Y_{it} - rac{1}{|\mathcal{C}|}\sum_{i\in\mathcal{C}}\sum_{s=1}^{T_0}Y_{is}
ight) \end{aligned}$$

• We can then average over all the periods under treatment:

$$\widehat{\tau}_{DID} = \frac{1}{T_1} \sum_{t=T_0+1}^{T} \widehat{\tau}_{DID,t}.$$

• We can similarly show that $E[\hat{\tau}_{DID,t}] = \tau_t$ and $E[\hat{\tau}_{DID}] = \tau$.

Multi-period DID

The previous estimator is equivalent to the following regression model:

$$Y_{it} = \mu + \sum_{s=1}^{T} \tau_s \mathbf{1}\{t = s\} \mathbf{1}\{i \in \mathcal{T}\} + \alpha_i + \xi_t + \varepsilon_{it}.$$

- For each treated unit, we control for the "leads and lags" of the treatment indicator on the right hand side.
- ► This is known as an "event study" model in the literature
- We can show that $\hat{\tau}_t = \hat{\tau}_{DID,t}$ for $t \ge T_0 + 1$ and $E[\hat{\tau}_t] = 0$ for $t \le T_0$.
- It generalizes our test for parallel trends in the two-period case.

Summary

- We say the data have a DID structure when all the treated units become under treatment from the same period.
- We can use the TWFE model to estimate the ATT, or use the event study method to estimate the ATT in any post-treatment period.
- Their results are identical to those from the DID estimator and robust to the heterogeneity in treatment effects.
- Both the TWFE and the event study models are justified by strict exogeneity, while the DID estimator only requires (conditional) parallel trends.
- Such an equivalence will break down when the data have a more complex structure.

Complex data structure

 Possibility I: once treated, always treated (staggered adoption/generalized DID).

Complex data structure

Possibility II: treatment switches on and off over periods.

Caveats of the TWFE model

- In either case, the within estimator from the TWFE model is inconsistent for the ATT.
- This problem was identified by a series of papers at the same time (Goodman-Bacon 2018; Chaisemartin and D'Haultfœuille 2020; Strezhnev 2017).
- The TWFE estimate equals a weighted average of individualistic treatment effects across the treated observations.
- ► The idea is similar to that in Aronow and Samii (2016), but the consequence is more severe.
- ► Let's denote the collection of treated observations as *M* and untreated ones as *O*.
- Then,

$$\hat{\tau}_{TWFE} \to \sum_{it:(i,t)\in\mathcal{M}} w_{it}\tau_{it},$$

where each
$$w_{it} = \frac{\tilde{D}_{it}}{\sum_{it:(i,t)\in\mathcal{M}}\tilde{D}_{it}}$$
 and $\tilde{D}_{it} = D_{it} - \bar{D}_{i.} - \bar{D}_{.t} + \bar{D}_{.t}$

Caveats of the TWFE model

Consider the following example:

• We can show that the within estimator, $\hat{\tau}$, converges to

$$\frac{11}{12}\left(\frac{1}{2}\tau_{24}+\frac{1}{4}\tau_{32}+\frac{1}{4}\tau_{33}-\frac{1}{12}\tau_{34}\right),$$

- Some weights can even be negative in practice, making it difficult to interpret the estimate in a causal way.
- The event study model has the same problem (Abraham and Sun 2018).

Caveats of the TWFE model

The issue is that the TWFE uses all the possible DID estimates in the data:

$$\hat{\tau}_{TWFE} = \frac{\sum_{t=1}^{T} \sum_{i, D_{it}=1} \sum_{j, D_{jt}=0} \sum_{t' \neq t} [(Y_{it} - Y_{it'}) - (Y_{jt} - Y_{jt'})]}{\sum_{t=1}^{T} \sum_{i, D_{it}=1} \sum_{j, D_{it}=0} \sum_{t' \neq t} (1 - D_{it'} + D_{jt'})}$$

• $(Y_{it} - Y_{it'}) - (Y_{jt} - Y_{jt'})$ goes through all the possible DIDs in the sample.

	Time				Time				Time			
Unit	1	2	3	Unit	1	2	3	τ	Unit	1	2	3
1	0		1	1	0	1	1	_	1	0	1	
2	0		1	2	0	1	1		2	0	1	1
3	0		1	3	0	0	1		3	0	0	1
4	0		1	4	0	0	1		4	0	0	1
5	0	0	0	5	0	0	0		5	0	0	0

Matched controls Valid second differences Invalid second differences

Solutions under staggered adoption

- As the problem is caused by invalid second differences, a straightforward solution is not to use them in estimation.
- Define cohort t as units whose treatment start from period t+1.
- We can estimate the ATT for each cohort as in the multi-period DID.
- We combine units that are treated only from period t and units that have not been treated in period t and obtain a dataset with the DID structure.
- In the previous example, we compare units 1 or 2 only with unit 5 but not with units 3 or 4.
- ► Then, we no longer have the invalid second differences.
- Finally, we average over cohorts for a consistent estimate of the ATT (Goodman-Bacon 2018; Strezhnev 2017).

Solutions under staggered adoption

- In the event study model, Abraham and Sun (2018) propose a similar modification.
- Instead of just "leads and lags," we should also control for the interaction between them and the cohort indicators.
- In other words, we should estimate the effects of "leads and lags" within each cohort and then aggregate across cohorts.
- These solutions do not work when the treatment switches on and off as we no longer have cohorts.
- But the key idea still applies: do not use treated observations to estimate any parameter other than *τ*.

Solutions under staggered adoption: application

Solutions under staggered adoption: application

Effects

Time

- Liu, Wang, and Xu (2020) extend the idea to data with treatment reversal.
- Remember how the DID estimator works:

$$\begin{split} \widehat{\tau}_{DID,t} = & \frac{1}{|\mathcal{T}|} \sum_{i \in \mathcal{T}} Y_{it} - \frac{1}{|\mathcal{T}|} \sum_{i \in \mathcal{T}} \sum_{s=1}^{T_0} Y_{is} \\ & - \left(\frac{1}{|\mathcal{C}|} \sum_{i \in \mathcal{C}} Y_{it} - \frac{1}{|\mathcal{C}|} \sum_{i \in \mathcal{C}} \sum_{s=1}^{T_0} Y_{is} \right) \\ & = & \frac{1}{|\mathcal{T}|} \sum_{i \in \mathcal{T}} (Y_{it} - \hat{Y}_{it}(0)). \end{split}$$

We impute the counterfactual for treated observations ((i, t) ∈ M) using a transformation of the untreated observations ((i, t) ∈ M).

Liu, Wang, and Xu (2020) combine the two-way fixed effects model with the Neyman-Rubin framework and assume that:

$$Y_{it}(0) = \mathbf{X}_{it}\beta + \alpha_i + \xi_t + \mathbf{e}_{it},$$

$$Y_{it}(1) = Y_{it}(0) + \tau_{it}.$$

► We use untreated observations to fit a two-way fixed effects model and employ the model to predict Y_{it}(0) for each treated observation.

• Clearly,
$$\hat{\tau}_{it} = Y_{it} - \hat{Y}_{it}(0)$$
 and

$$\widehat{\tau}_{ATT} = rac{1}{|\mathcal{M}|} \sum_{(i,t)\in\mathcal{M}} \tau_{it}.$$

- In a panel setting, treat Y(1) as missing data
- Predict Y(0) based on an outcome model
- (Use pre-treatment data for model selection)
- Estimate ATT by averaging differences between Y(1) and $\hat{Y}(0)$

Treatment Status

- Liu, Wang, and Xu (2020) show that the estimator is unbiased and consistent for the ATT in each period.
- The periods are now redefined relative to when the treatment kicks off.
- It thus avoids the problem of negative weights.
- It is more straightforward to conduct event study using this method.
- ATT estimates in the pre-treatment periods provide us a way to examine the assumptions.
- They rely on block bootstrap to estimate the standard errors and the confidence interval.
- ► The framework can incorporate more complicated models.
- ▶ It can be implemented in R with the package *fect*.

Counterfactual estimation: application

Estimated ATT (FEct)

Test in counterfactual estimation

- There are tools for practitioners to evaluate the identification assumption rigorously.
- A placebo test: estimate treatment effects before the treatment's onset and test their significance.
- ► Idea: if we apply the estimator to period -s, then the result should be indistinguishable from zero.
- An equivalence test: test whether all the pre-treatment ATTs are equal to zero.
- A test on the violation of SUTVA.

Test in counterfactual estimation: application

Testing Pre-Trend (FEct)

Test in counterfactual estimation: application

Counterfactual estimation: caveats

- We should keep in mind that the validity of this approach relies on a series of assumptions.
- The model specification has to be correct:
 - Observable and unobservable confounders are separable.
 - Observable confounders affect the outcome in a linear and homogeneous manner.
 - Unobservable confounders have a low-dimensional decomposition.
- It also requires strict exogeneity and the absence of interference.

A high-level perspective

 Arkhangelsky and Imbens (2019) illustrate that under the DGP of the TWFE model, any estimator can be written as a weighting estimator such that:

$$\{\hat{w}_{it}\} = \arg\min\frac{1}{NT}\sum_{i=1}^{N}\sum_{t=1}^{T}\hat{w}_{it}^{2},$$

s.t. $\frac{1}{NT}\sum_{i=1}^{N}\sum_{t=1}^{T}\hat{w}_{it}D_{it} = 1, \frac{1}{N}\sum_{i=1}^{N}\hat{w}_{it} = 0,$
 $\frac{1}{T}\sum_{t=1}^{T}\hat{w}_{it} = 0, \hat{w}_{it}D_{it} \ge 0.$

Then, the causal estimate is

$$\hat{\tau} = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \hat{w}_{it} Y_{it}$$

A high-level perspective

- The solution of $\{\hat{w}_{it}\}$ is not unique in data.
- We can verify that weights generated by the within estimator satisfy conditions 1-3 but not condition 4.
- This is why we have the problem of negative weights.
- Meanwhile, weights generated by the counterfactual estimator satisfy all the conditions.
- This is the result of not using any treated observation to infer the nuisance parameters.

References I

Abadie, Alberto. 2005. "Semiparametric Difference-in-Differences Estimators." *The Review of Economic Studies* 72 (1): 1–19.
Abraham, Sarah, and Liyang Sun. 2018. "Estimating Dynamic Treatment Effects in Event Studies with Heterogeneous Treatment Effects." *arXiv Preprint arXiv:1804.05785*.
Arkhangelsky, Dmitry, and Guido W Imbens. 2019. "Double-Robust Identification for Causal Panel Data Models." *arXiv Preprint arXiv:1909.09412*.

Aronow, Peter M, and Cyrus Samii. 2016. "Does Regression Produce Representative Estimates of Causal Effects?" *American Journal of Political Science* 60 (1): 250–67.

Chaisemartin, Clément de, and Xavier D'Haultfœuille. 2020. "Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects." *American Economic Review*.

Goodman-Bacon, Andrew. 2018. "Difference-in-Differences with Variation in Treatment Timing." National Bureau of Economic Research. Liu, Licheng, Ye Wang, and Yiqing Xu. 2020. "A Practical Guide to Counterfactual Estimators for Causal Inference with Time-Series Cross-Sectional Data." Available at SSRN 3555463.
Strezhnev, Anton. 2017. "Generalized Difference-in-Differences Estimands and Synthetic Controls." Unpublished Manuscript.