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Review

I In the previous class, we discussed the uniqueness of panel data
and how it allows us to relax the identification assumption.

I Two common assumptions: sequential ignorability and strict
exogeneity.

I They are based on different ideal experiments.
I Under strict exogeneity, we must impose structural restrictions

on the DGP.
I Then, we can rely on the TWFE model and the within

estimator to estimate the causal effect.
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From TWFE to DID

I Suppose there are only two periods, 1 and 2.
I There are N1 units in the treatment group (i ∈ T ) and N0 in

the control group (i ∈ C).
I Dit = 0 in period 1 for any i and Dit = 1 in period 2 only for

units in the treatment group:

Yit =
{

Yit(1), if i ∈ T and t = 2
Yit(0), otherwise

I We maintain the assumptions for the TWFE model:

Yit = µ+ τDit + αi + ξt + εit ,

E [εis |Dit , αi , ξt ] = 0 for any s.

I There exists a simpler estimator for τ in this case
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From TWFE to DID
I Note that strict exogeneity implies the following:

E [Yi2(0)− Yi1(0)|i ∈ T ]
=E [µ+ αi + ξ2 + εi2 − (µ+ αi + ξ1 + εi1)|i ∈ T ]
=ξ2 − ξ1

=E [Yi2(0)− Yi1(0)|i ∈ C].

I This assumption is known as “parallel trends”.
I It means that without the treatment, the increase (trend) in

the outcome would be the same across the two groups.
I Strict exogeneity is a sufficient condition for parallel trends to

hold.
I This assumption implies that

E [Yi2(0)|i ∈ T ]
=E [Yi1(0)|i ∈ T ] + E [Yi2(0)|i ∈ C]− E [Yi1(0)|i ∈ C].
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From TWFE to DID

I Therefore,

τ =E [Yi2(1)− Yi2(0)|i ∈ T ]
=E [Yi2(1)|i ∈ T ]− E [Yi2(0)|i ∈ T ]
=E [Yi2(1)|i ∈ T ]− E [Yi1(0)|i ∈ T ]
− (E [Yi2(0)|i ∈ C]− E [Yi1(0)|i ∈ C])

=E [Yi2|i ∈ T ]− E [Yi1|i ∈ T ]
− (E [Yi2|i ∈ C]− E [Yi1|i ∈ C])

I In practice, we estimate τ by

τ̂DID = 1
|T |

∑
i∈T

Yi2−
1
|T |

∑
i∈T

Yi1−
(

1
|C|
∑
i∈C

Yi2 −
1
|C|
∑
i∈C

Yi1

)
.
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From TWFE to DID

I This is known as the difference-in-differences (DID) estimator.
I We first take the within-unit difference for each i , and then

take another difference between the two average differences.
I The estimator is motivated by the TWFE model with

homogeneous treatment effects.
I But it is robust to heterogeneous treatment effects.
I Let’s assume that parallel trends holds and denote

τit = Yit(1)− Yit(0)
τATT ,t = E [τit |i ∈ T ].

I We can show that

E [τ̂DID] = E [Yi2(1)− Yi2(0)|i ∈ T ] = τATT ,2.

I Moreover, τ̂DID = τ̂TWFE .
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Validate parallel trends
I As an estimator, DID requires only parallel trends rather than

strict exogeneity.
I The assumption allows us to impute the conterfactual for the

treated observations.
I It is not directly testable since the definition involves

E [Yi2(0)|i ∈ T ], which is not observable.
I But we can test its validity indirectly.
I Suppose we have another pre-treatment period, period 0.
I If the trends are parallel between periods 1 and 2, it is

reasonable to expect them to be parallel between 0 and 1:
E [Yi1(0)|i ∈ T ]− E [Yi0(0)|i ∈ T ]

=E [Yi1(0)|i ∈ C]− E [Yi0(0)|i ∈ C].
I In finite sample, it implies that

1
|T |

∑
i∈T

Yi1 −
1
|T |

∑
i∈T

Yi0 −
(

1
|C|
∑
i∈C

Yi1 −
1
|C|
∑
i∈C

Yi0

)
≈ 0.

7 / 33



Validate parallel trends
I Parallel trends may be more plausible once we focus on a

smaller group:

E [Yi2(0)− Yi1(0)|i ∈ T ,Xi = x]
= E [Yi2(0)− Yi1(0)|i ∈ C,Xi = x].

I This is known as “conditional parallel trends”.
I Let’s define Di = 1{i ∈ T } and ∆Yi (Di ) = Yi2(Di )− Yi1(Di ).
I The condition that

E [∆Yi (0)|Di = 1,Xi = x] = E [∆Yi (0)|Di = 0,Xi = x] is
similar to unconfoundedness.

I It is sufficient for identifying the ATT via the IPW estimators:

τ̂SDID = 1
|T |

∑
i∈T

∆Yi −
1
|C|
∑
i∈C

ĝ(Xi )∆Yi
1− ĝ(Xi )

.

I This is the semiparametric DID estimator in Abadie (2005).
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Multi-period DID
I We can extend the analysis to datasets with multiple periods.
I Suppose there are T0 pre-treatment periods and T1

post-treatment periods.
I For any t ≥ T0 + 1,

τ̂DID,t = 1
|T |

∑
i∈T

Yit −
1
|T |T0

∑
i∈T

T0∑
s=1

Yis

−

 1
|C|
∑
i∈C

Yit −
1
|C|T0

∑
i∈C

T0∑
s=1

Yis


I We can then average over all the periods under treatment:

τ̂DID = 1
T1

T∑
t=T0+1

τ̂DID,t .

I We can similarly show that E [τ̂DID,t ] = τt and E [τ̂DID] = τ .
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Multi-period DID

I The previous estimator is equivalent to the following regression
model:

Yit = µ+
T∑

s=1
τs1{t = s}1{i ∈ T }+ αi + ξt + εit .

I For each treated unit, we control for the “leads and lags” of
the treatment indicator on the right hand side.

I This is known as an “event study” model in the literature
I We can show that τ̂t = τ̂DID,t for t ≥ T0 + 1 and E [τ̂t ] = 0 for

t ≤ T0.
I It generalizes our test for parallel trends in the two-period case.
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Summary

I We say the data have a DID structure when all the treated
units become under treatment from the same period.

I We can use the TWFE model to estimate the ATT, or use the
event study method to estimate the ATT in any post-treatment
period.

I Their results are identical to those from the DID estimator and
robust to the heterogeneity in treatment effects.

I Both the TWFE and the event study models are justified by
strict exogeneity, while the DID estimator only requires
(conditional) parallel trends.

I Such an equivalence will break down when the data have a
more complex structure.
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Complex data structure
I Possibility I: once treated, always treated (staggered

adoption/generalized DID).
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Complex data structure

I Possibility II: treatment switches on and off over periods.
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Caveats of the TWFE model
I In either case, the within estimator from the TWFE model is

inconsistent for the ATT.
I This problem was identified by a series of papers at the same

time (Goodman-Bacon 2018; Chaisemartin and D’Haultfœuille
2020; Strezhnev 2017).

I The TWFE estimate equals a weighted average of
individualistic treatment effects across the treated observations.

I The idea is similar to that in Aronow and Samii (2016), but
the consequence is more severe.

I Let’s denote the collection of treated observations asM and
untreated ones as O.

I Then,
τ̂TWFE →

∑
it:(i ,t)∈M

witτit ,

where each wit = D̃it∑
it:(i,t)∈M D̃it

and D̃it = Dit − D̄i . − D̄.t + D̄.
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Caveats of the TWFE model

I Consider the following example:
Periods

1 2 3 4 D̄i .
1 0 0 0 0 0

Units 2 0 0 0 1 1/4
3 0 1 1 1 3/4

D̄.t 0 1/3 1/3 2/3 1/3
I We can show that the within estimator, τ̂ , converges to

11
12

(1
2τ24 + 1

4τ32 + 1
4τ33 −

1
12τ34

)
,

I Some weights can even be negative in practice, making it
difficult to interpret the estimate in a causal way.

I The event study model has the same problem (Abraham and
Sun 2018).
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Caveats of the TWFE model
I The issue is that the TWFE uses all the possible DID estimates

in the data:

τ̂TWFE =
∑T

t=1
∑

i ,Dit=1
∑

j,Djt=0
∑

t′ 6=t [(Yit − Yit′)− (Yjt − Yjt′)]∑T
t=1

∑
i ,Dit=1

∑
j,Dit=0

∑
t′ 6=t(1− Dit′ + Djt′)

I (Yit − Yit′)− (Yjt − Yjt′) goes through all the possible DIDs in
the sample.
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Solutions under staggered adoption

I As the problem is caused by invalid second differences, a
straightforward solution is not to use them in estimation.

I Define cohort t as units whose treatment start from period
t + 1.

I We can estimate the ATT for each cohort as in the
multi-period DID.

I We combine units that are treated only from period t and units
that have not been treated in period t and obtain a dataset
with the DID structure.

I In the previous example, we compare units 1 or 2 only with unit
5 but not with units 3 or 4.

I Then, we no longer have the invalid second differences.
I Finally, we average over cohorts for a consistent estimate of the

ATT (Goodman-Bacon 2018; Strezhnev 2017).
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Solutions under staggered adoption

I In the event study model, Abraham and Sun (2018) propose a
similar modification.

I Instead of just “leads and lags,” we should also control for the
interaction between them and the cohort indicators.

I In other words, we should estimate the effects of “leads and
lags” within each cohort and then aggregate across cohorts.

I These solutions do not work when the treatment switches on
and off as we no longer have cohorts.

I But the key idea still applies: do not use treated observations
to estimate any parameter other than τ .
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Solutions under staggered adoption: application
I A key step is to examine the data structure.
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Solutions under staggered adoption: application
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Counterfactual estimation

I Liu, Wang, and Xu (2020) extend the idea to data with
treatment reversal.

I Remember how the DID estimator works:

τ̂DID,t = 1
|T |

∑
i∈T

Yit −
1
|T |T0

∑
i∈T

T0∑
s=1

Yis

−

 1
|C|
∑
i∈C

Yit −
1
|C|T0

∑
i∈C

T0∑
s=1

Yis


= 1
|T |

∑
i∈T

(Yit − Ŷit(0)).

I We impute the counterfactual for treated observations
((i , t) ∈M) using a transformation of the untreated
observations ((i , t) ∈M).
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Counterfactual estimation

I Liu, Wang, and Xu (2020) combine the two-way fixed effects
model with the Neyman-Rubin framework and assume that:

Yit(0) = Xitβ + αi + ξt + eit ,

Yit(1) = Yit(0) + τit .

I We use untreated observations to fit a two-way fixed effects
model and employ the model to predict Yit(0) for each treated
observation.

I Clearly, τ̂it = Yit − Ŷit(0) and

τ̂ATT = 1
|M|

∑
(i ,t)∈M

τit .
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Counterfactual estimation
I In a panel setting, treat Y (1) as missing data

I Predict Y (0) based on an outcome model

I (Use pre-treatment data for model selection)

I Estimate ATT by averaging differences between Y (1) and Ŷ (0)
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Counterfactual estimation

I Liu, Wang, and Xu (2020) show that the estimator is unbiased
and consistent for the ATT in each period.

I The periods are now redefined relative to when the treatment
kicks off.

I It thus avoids the problem of negative weights.
I It is more straightforward to conduct event study using this

method.
I ATT estimates in the pre-treatment periods provide us a way

to examine the assumptions.
I They rely on block bootstrap to estimate the standard errors

and the confidence interval.
I The framework can incorporate more complicated models.
I It can be implemented in R with the package fect.
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Counterfactual estimation: application
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Test in counterfactual estimation

I There are tools for practitioners to evaluate the identification
assumption rigorously.

I A placebo test: estimate treatment effects before the
treatment’s onset and test their significance.

I Idea: if we apply the estimator to period −s, then the result
should be indistinguishable from zero.

I An equivalence test: test whether all the pre-treatment ATTs
are equal to zero.

I A test on the violation of SUTVA.
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Test in counterfactual estimation: application

F test p−value: 0.007

Equivalence test p−value: 0.000
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Test in counterfactual estimation: application

Placebo test p−value: 0.471

Placebo equivalence test p−value: 0.000
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Counterfactual estimation: caveats

I We should keep in mind that the validity of this approach relies
on a series of assumptions.

I The model specification has to be correct:
I Observable and unobservable confounders are separable.
I Observable confounders affect the outcome in a linear and

homogeneous manner.
I Unobservable confounders have a low-dimensional

decomposition.
I It also requires strict exogeneity and the absence of

interference.
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A high-level perspective
I Arkhangelsky and Imbens (2019) illustrate that under the DGP

of the TWFE model, any estimator can be written as a
weighting estimator such that:

{ŵit} = argmin 1
NT

N∑
i=1

T∑
t=1

ŵ2
it ,

s.t. 1
NT

N∑
i=1

T∑
t=1

ŵitDit = 1, 1N

N∑
i=1

ŵit = 0,

1
T

T∑
t=1

ŵit = 0, ŵitDit ≥ 0.

I Then, the causal estimate is

τ̂ = 1
NT

N∑
i=1

T∑
t=1

ŵitYit
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A high-level perspective

I The solution of {ŵit} is not unique in data.
I We can verify that weights generated by the within estimator

satisfy conditions 1-3 but not condition 4.
I This is why we have the problem of negative weights.
I Meanwhile, weights generated by the counterfactual estimator

satisfy all the conditions.
I This is the result of not using any treated observation to infer

the nuisance parameters.
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