Regression and Balancing

Ye Wang University of North Carolina at Chapel Hill

Linear Methods in Causal Inference POLI784

Review

- We introduced another method to account for the influence of confounders, weighting.
- ▶ It is based on the argument of Rosenbaum and Rubin that the propensity score is central for causal inference.
- It contains all the information from the confounders and should be a balance score.
- We can estimate the propensity scores with either logistic regression or the CBPS method.
- ► Then, we rely on the IPW estimators (HT or HA) to obtain the estimates.
- Using the estimated propensity scores is more efficient than using the true propensity scores.
- Ignoring the uncertainty from estimating the propensity scores leads to conservative variance estimates.

Regression

- Conventionally, we use regression models to control for the influence of confounders.
- ▶ We run the following regression:

$$Y_{i} = \tau D_{i} + \mathbf{X}_{i}' \beta + \varepsilon_{i}.$$

Except for strong ignorability, we also assume that

$$E[Y_i|D_i,\mathbf{X}_i] = \tau D_i + \mathbf{X}_i'\beta$$

- The impacts from the regressors are additive, linear, and homogeneous.
- These are structural restrictions that are usually unjustified.

- Remember that when D_i is randomly assigned, controlling X_i does not cause any bias asymptotically.
- ► This is no longer the case when we implement block randomization or assume strong ignorability.
- Let's assume that

$$Y_i = Y_i(0) + \tau_i D_i,$$

 $E[D_i | \mathbf{X}_i] = \mathbf{X}_i' \eta.$

Aronow and Samii (2016) show that under these conditions,

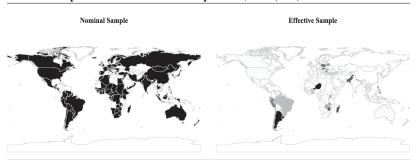
$$\hat{\tau}_{OLS} \rightarrow \frac{E[w_i \tau_i]}{E[w_i]} \neq E[\tau_i],$$

where
$$w_i = (D_i - E[D_i | \mathbf{X}_i])^2$$
.

- The OLS estimate converges to a "convex combination" of individualistic treatment effects.
- In the definition of the SATE, each τ_i has a weight of $\frac{1}{N}$.
- ▶ But in the OLS estimate, the weights vary across the units.
- In general, $\hat{\tau}_{OLS}$ does not converge to τ unless $\tau_i = \tau$ (homogeneity).
- Observations have unequal contributions to the estimate.
- ► The group in which the treatment varies more drastically is over-weighted in the analysis.
- ► Thus, the OLS estimate is not representative of the sample and does not have a higher external validity.
- ▶ Aronow and Samii (2016) define the concept of "effective sample," the sample re-weighted by each unit's contribution to the estimate.

In the effective sample, each unit has a weight of $\hat{\nu}_i^2$, where $\hat{\nu}_i$ is the residual from regressing D_i on \mathbf{X}_i .

FIGURE 1 Example of nominal and effective samples from Jensen (2003)



Note: On the left, the shading shows countries in the nominal sample for Jensen (2003) estimate of the effects of regime type on FDI. On the right, darker shading indicates that a country contributes more to the effective sample, based on the panel specification used in estimation.

- Regression may prevent you from seeing the failure of positivity.
- ▶ Let's assume that $\tau_i = \tau$ and linearity holds.
- We fit regression models on both the treatment group and the control group.
- ▶ The regression coefficients will be consistently estimated, and we can calculate the predicted outcome \hat{Y}_i for any unit.
- \blacktriangleright Then, we estimate τ by

$$\hat{\tau} = \frac{1}{N_1} \sum_{i=1}^{N} D_i \hat{Y}_i - \frac{1}{N_0} \sum_{i=1}^{N} (1 - D_i) \hat{Y}_i.$$

It is straightforward to show that

$$E[\hat{\tau}] \to \tau + (\bar{\mathbf{X}}_1 - \bar{\mathbf{X}}_0)\beta.$$

▶ If positivity fails, $\bar{\mathbf{X}}_1 \neq \bar{\mathbf{X}}_0$ and the estimator is inconsistent.

Regression: remedy

- ▶ One solution is to rely on the "counterfactual estimator" (Kline 2011; Heckman, Ichimura, and Todd 1997).
- We first estimate β using only units in the control group.
- ▶ Then, we predict the counterfactual of each treated unit via

$$\hat{Y}_{i}(0) = \mathbf{X}'_{i}\hat{\beta}.$$

• We estimate τ via

$$\hat{\tau}_{reg} = \frac{1}{N_1} \sum_{i=1}^{N} D_i \left(Y_i - \hat{Y}_i(0) \right) \to \tau_{ATT} = \frac{1}{N_1} \sum_{i:D_i=1} \tau_i.$$

- ► This estimator does not suffer from the asymptotic bias as we weight the treated units properly.
- ▶ The idea is later generalized to "X-learner" by Künzel et al. (2019) where they use machine learning to predict $\hat{Y}_i(0)$.

Regression: pros and cons

- Regression requires the correct model specification and relies on extrapolation when positivity fails.
- ▶ We can increase the complexity of the outcome model to reduce the bias caused by treatment effect heterogeneity (Ratkovic 2019).
- ▶ For instance, with one confounder, we can fit two kernel regression models, $\hat{m}_1(X_i)$ and $\hat{m}_0(X_i)$, on the treatment group and the control group, respectively.
- ► Then,

$$\hat{ au}_{reg} = rac{1}{N} \sum_{i=1}^{N} [\hat{m}_1(X_i) - \hat{m}_0(X_i)]$$

will be consistent for τ .

▶ Regression requires weaker assumptions: $E[\varepsilon_i|\mathbf{X}_i] = 0$.

Regression: application

```
## The OLS estimate is 1794.343
## The SE of OLS estimate is 670.9967
## The Lin regression estimate is 1583.468
## The SE of Lin regression estimate is 678.0574
```

Regression: application

The regression ATT estimate is 687.8221

Balancing

Now, consider the outcome model

$$Y_i(0) = \mathbf{X}_i' \beta_0,$$

 $Y_i(1) = \mathbf{X}_i' \beta_1 + \tau_i.$

▶ Suppose we can find a group of weights, $\{w_i\}_{(i:D_i=0)}$, such that

$$ar{\mathbf{X}}_1 = \sum_{i:D_i=0} w_i \mathbf{X}_i, \ \ \mathsf{and} \sum_{i:D_i=0} w_i = 1$$

► Then,

$$ar{Y}_1-ar{Y}_0^w= au_{ATT}+(ar{\mathbf{X}}_1-ar{\mathbf{X}}_1)eta= au_{ATT},$$
 with $ar{Y}_0^w=\sum_{i:D_i=0}w_iY_i.$

This is an idea known as balancing.

Entropy balancing

- ▶ There are many possible sets of $\{w_i\}_{(i:D_i=0)}$ that satisfy the balance conditions.
- We choose the set that minimizes a pre-specified criterion, such as the entropy (Hainmueller 2012):

$$\sum_{i:D_i=0} w_i \log w_i.$$

- This method is thus known as "entropy balancing."
- Entropy measures the "uncertainty inherent to the variable's possible outcomes" (Wikipedia).
- ▶ It has a root in statistical thermodynamics and was introduced by Shannon when he founded the information theory.
- ▶ Entropy can also be seen as the "distance" from the uniform distribution $(w_i = 1/N_0)$.
- ▶ The weights can be solved via convex optimization.

Entropy balancing

We estimate the ATT via

$$\hat{\tau}_{EB} = \frac{1}{N_1} \sum_{i:D_i=1} Y_i - \sum_{i:D_i=0} \hat{w}_i Y_i$$

- $\hat{\tau}_{EB}$ is consistent when either the outcome is linear in \mathbf{X}_i or the propensity score model is logistic (Zhao and Percival 2016).
- We can try to balance higher order moments of X.
- ► The more moments we balance, the more likely we eliminate all the influences of X.
- ▶ There can be too many choices if **X** is also high-dimensional.
- We need approaches to select moments that matter.
- ► This can be done by either kernel balancing (Hazlett 2018) or hierarchically regularized entropy balancing (Xu and Yang 2021).

Kernel balancing

- In kernel balancing, we calculate the kernel distance between each pair of units.
- Suppose we use the Gaussian kernel

$$k(\mathbf{X}_i,\mathbf{X}_j)=e^{-\frac{||\mathbf{X}_i-\mathbf{X}_j||^2}{2b}},$$

and generate the kernel matrix **K** with the (i, j)th element being $k(\mathbf{X}_i, \mathbf{X}_j)$.

▶ We find a group of weights $\{w_i\}_{(i:D_i=0)}$ such that

$$rac{1}{N_1} \sum_{i:D_i=1} k(\mathbf{X}_i, \mathbf{X}_j) pprox \sum_{i:D_i=0} w_i k(\mathbf{X}_i, \mathbf{X}_j) \ \sum_{i:D_i=0} w_i = 1,$$

for any j.

▶ $\{k(\mathbf{X}_i, \mathbf{X}_i)\}_{i\neq i}$ are seen as N-1 covariates of i.

Kernel balancing

► Hazlett (2018) show that if

$$Y_i = \alpha + \tau_i D_i + \Phi(\mathbf{X}_i)'\beta + \varepsilon_i,$$

$$\langle \Phi(\mathbf{X}_i), \Phi(\mathbf{X}_j) \rangle = k(\mathbf{X}_i, \mathbf{X}_j),$$

then these weights also satisfy

$$\frac{1}{N_1}\sum_{i:D_i=1}\Phi(\mathbf{X}_i)=\sum_{i:D_i=0}w_i\Phi(\mathbf{X}_i).$$

- ► For the Gaussian kernel, $\Phi(\mathbf{X}_i)$ encompasses all the continuous functions of \mathbf{X}_i when $N \to \infty$.
- Similarly, the balancing stage introduces extra uncertainties which are often ignored in practice (Wong and Chan 2018).

Balancing: application

```
## Converged within tolerance
## The ebal ATT estimate is 2424.661
## The SE of ebal ATT estimate is 894.7984
```

Balancing: application

##	age e	ducation	black	hispar	nic ma	arried	nodeg
##	25.8162	10.3459	0.8432	0.05	595 (0.1892	0.7
##	u74	u75					
##	0.7081	0.6000					
##	age	education	bla	ck hi	ispanic	mar	ried
##	34.8506	12.1169	0.25	06	0.0325	0.	8663
##	re75	u74	u	75			
##	19063.3377	0.0863	0.10	00			
##	age e	ducation	black	hispar	nic ma	arried	nodeg
##	25.8162	10.3459	0.8432	0.05	595 (0.1892	0.7
##	u74	u75					
##	0.7081	0.6000					

References I

- Aronow, Peter M, and Cyrus Samii. 2016. "Does Regression Produce Representative Estimates of Causal Effects?" *American Journal of Political Science* 60 (1): 250–67.
- Hainmueller, Jens. 2012. "Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies." *Political Analysis*, 25–46.
- Hazlett, Chad. 2018. "Kernel Balancing: A Flexible Non-Parametric Weighting Procedure for Estimating Causal Effects." *Available at SSRN 2746753*.
- Heckman, James J, Hidehiko Ichimura, and Petra E Todd. 1997. "Matching as an Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme." *The Review of Economic Studies* 64 (4): 605–54.
- Kline, Patrick. 2011. "Oaxaca-Blinder as a Reweighting Estimator." *American Economic Review* 101 (3): 532–37.

References II

- Künzel, Sören R, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. 2019. "Metalearners for Estimating Heterogeneous Treatment Effects Using Machine Learning." *Proceedings of the National Academy of Sciences* 116 (10): 4156–65.
- Ratkovic, Marc. 2019. "Rehabilitating the Regression: Honest and Valid Causal Inference Through Machine Learning."
- Wong, Raymond KW, and Kwun Chuen Gary Chan. 2018. "Kernel-Based Covariate Functional Balancing for Observational Studies." *Biometrika* 105 (1): 199–213.
- Xu, Yiqing, and Eddie Yang. 2021. "Hierarchically Regularized Entropy Balancing." *Available at SSRN 3807620*.
- Zhao, Qingyuan, and Daniel Percival. 2016. "Entropy Balancing Is Doubly Robust." *Journal of Causal Inference*. De Gruyter.