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Review

I There are two consistent estimators for experimental analysis,
the Horvitz-Thompson estimator and the Hajek estimator.

I The former is unbiased but the second is more efficient.
I We can conduct statistical inference in experiments with the

analytic approach.
I First, we use the Neyman variance estimator to estimate the

asymptotic variance.
I The variance captures the design-based uncertainty.
I The variance estimate is conservative unless the treatment

effect is constant or the estimand is the PATE.
I Next, we construct confidence intervals using critical values

from the normal distribution.
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Resampling techniques

I The analytic approach is hard to work with.
I Deriving the variance is challenging, and proving asymptotic

normality requires more technicalities.
I The CI may still perform poorly after all the labor.
I An alternative is to rely on resampling techniques.
I They approximate FN(τ̂) with a direct estimate F̂N(τ̂) rather

than N (0,N ∗ Var(τ̂)).
I They can be more efficient, and we don’t even have to

calculate the variance!
I But they do not work everywhere.
I We consider three methods: Fisher’s randomization test,

boostrap, and jackknife.
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Fisher’s randomization test

I We usually want to test the weak null hypothesis: τSATE = 0.
I Fisher suggests that we may also test the sharp null hypothesis:
τi = 0 for any unit in the sample.

I What is the relationship between the weak null and the sharp
null?

I Suppose the sharp null is true, then we actually know the
counterfactual of each unit.

I Since the individualistic effect is zero, Yi(1) = Yi(0) for any i .
I Now, we know the distribution of the potential outcomes in the

sample!
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Fisher’s randomization test

I Remember that the potential outcomes are fixed quantities.
I Therefore, we can literally run the experiment repeatedly and

obtain one ATE estimate from each experiment.
I This will be the true distribution of the estimates, F̂N(τ̂),

under the sharp null.
I We reject the sharp null if the original estimate is an outlier in

the distribution.
I This is called Fisher’s randomization test (FRT).
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Fisher’s randomization test

I The true distribution of the potential outcomes is

Unit Yi(1) Yi(0) Di

1 3 2
2 5 3
3 4 5

I The ATE equals to (1 + 2− 1)/3 = 2/3.
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Fisher’s randomization test

I Our data is

Unit Yi Di

1 3 1
2 3 0
3 4 1

I And the ATE estimate is (3 + 4)/2− 3 = 0.5.
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Fisher’s randomization test

I Under the sharp null

Unit Yi(1) Yi(0)

1 3 3
2 3 3
3 4 4
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Fisher’s randomization test

I Under the sharp null

Unit Yi(1) Yi(0) Di Yi

1 3 3 1 3
2 3 3 1 3
3 4 4 0 4

I The ATE estimate is (3 + 3)/2− 4 = −1.
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Fisher’s randomization test

I Under the sharp null

Unit Yi(1) Yi(0) Di Yi

1 3 3 0 3
2 3 3 0 3
3 4 4 1 4

I The ATE estimate is 4− (3 + 3)/2 = 1.
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Fisher’s randomization test: simulation
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## The 95% confidence interval is 1.847 3.113
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Fisher’s randomization test

I Remember that the sharp null is weaker than the weak null on
the ATE.

I Even if we reject the sharp null, we do not necessarily reject
the weak null.

I Even if the treatment is effective on certain units, its average
impact is insignificant.

I In practice though, we may reject the weak null without
rejecting the sharp null.

I This is caused by the convergence rate of the two tests (Ding
et al. 2017).
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Fisher’s randomization test: pros and cons

I The FRT works well under complex research designs.
I It ensures the correct coverage even in small samples.
I It circumvents regularity conditions in asymptotic analysis that

are not satisfied in certain cases (Young 2019).
I If you know the assignment algorithm but not how to estimate

the analytic variance, you can do FRT.
I Applying the FRT to test the weak null leads to

anti-conservative results (Wu and Ding 2020).
I We can construct FRTs that have the correct coverage under

the sharp null and remain asymptotically valid under the weak
null (Cohen and Fogarty 2020).
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Bootstrap

I Recall that an estimator maps the data to an number.
I If we know the distribution of the data, we can resample from

it and construct the distribution of the estimate.
I That’s what we did in our simulation for the sample average.
I We drew 1, 000 samples from the uniform distribution, F (y),

and approximate τ̂ ’s distribution with these 1, 000 estimates.
I In practice, we do not know the distribution of the data.
I The bootstrap approach suggests that we estimate this

distribution with the empirical distribution of our data:

F̂ (y) = 1
N

N∑
i=1

1{Yi ≤ y}.

I The law of large numbers tells us that F̂ (y)→ F (y) as
N →∞.
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Bootstrap
average-1.pdf

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

C
D

F
 o

f t
he

 u
ni

fo
rm

 d
is

tr
ib

ut
io

n

CDF
Empirical CDF

15 / 28



Bootstrap
I We sample from the empirical distribution as if we were

sampling from the true distribution F (y).
I The key is to rely on the same sampling strategy.
I This will be accurate when N is large.
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Bootstrap: algorithms

I Sampling from the empirical distribution is equivalent to redraw
a subsample from the data with replacement.

I The redrawn sample can have an arbitrary size.
I But statistical theory indicates that drawing a subsample with

N units is the most efficient approach.
I Statistical inference for τ̂ proceeds by

1. resampling N observations from the data with replacement,
2. estimating τ̂∗ using the resampled data, and
3. constructing confidence intervals from the distribution of τ̂∗.

I We do the same in the setting of causal inference.
I We need redraw Yi and Di simultaneously and stick with one

estimator.
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Bootstrap: algorithms

I Suppose we resample B times and obtain {τ̂∗b}Bb=1 and
{σ̂∗b}Bb=1.

I There are three variants to construct the 95% confidence
intervals.

I The Efron method: we find the 2.5% and 97.5% quantiles of
{τ̂∗b}Bb=1, ξ̂2.5% and ξ̂97.5%, and [ξ̂2.5%, ξ̂97.5%] will be the
confidence interval.

I The percentile t-method: we find the 2.5% and 97.5%
quantiles of τ̂∗

b−τ̂
σ̂∗

b /
√

N and construct the confidence interval using
the original effect and variance estimates plus the bootstrapped
quantiles.

I The percentile method: we find the 2.5% and 97.5% quantiles
of τ̂∗b − τ̂ and subtract them from τ̂ .
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Bootstrap: algorithms

I Clearly, if we can find numbers z2.5% and z97.5% such that

P
(

z2.5% ≤
τ̂ − τ
σ̂/
√

N
≤ z97.5%

)
≥ 95%,

then the 95% confidence interval will be
[τ̂ − z97.5% ∗ σ̂/

√
N, τ̂ − z2.5% ∗ σ̂/

√
N].

I The percentile t-method estimates the critical values by finding
ẑ2.5% and ẑ97.5% such that

P
(

ẑ2.5% ≤
τ̂∗ − τ̂
σ̂∗/
√

N
≤ ẑ97.5%

)
≥ 95%,

I Therefore, the bootstrapped the 95% confidence interval is
[τ̂ − ẑ97.5% ∗ σ̂/

√
N, τ̂ − ẑ2.5% ∗ σ̂/

√
N].
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Bootstrap: algorithms

I The percentile method resamples the centered estimate τ̂ − τ .
I The logic is similar and the bootstrapped the 95% confidence

interval is [τ̂ − η̂97.5%, τ̂ − η̂2.5%].
I Here η̂97.5% is an estimate of z2.5% ∗ σ/

√
N.

I For the Efron method, we can see that
[ξ̂2.5%, ξ̂97.5%] = [τ̂ + η̂2.5%, τ̂ + η̂97.5%].

I It works only when the true distribution is symmetric hence
η̂2.5% = −η̂97.5%.

I In this case, the three variants have very similar performance.
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Bootstrap: some theory

I The percentile t-method should provide us with a more
accurate approximation of the true confidence interval.

I It resamples the t-statistic rather than the estimate.
I We call the transformation from the estimate to the t-statistic
“studentization:”

t = τ̂ − τ
σ̂/
√

N
I Note that the t-statistic converges to the standard normal

distribution, which does not hinge on any parameter that has
to be estimated.

I Such statistics are known as “pivotal” statistics.
I Bootstrap pivotal statistics gives us “asymptotic refinement,”

meaning the CI will be more accurately approximated.
I But of course it requires us to estimate the variance.
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Jackknife

I Jackknife was invented before bootstrap.
I But now it is seen as another variant of bootstrap.
I We occasionally use it for variance estimation.
I We leave each unit out and conduct estimation with the rest

N − 1 units.
I We obtain N estimates: {τ̂∗i }Ni=1.
I Their variance is an approximation for the estimate’s variance.
I We can also use bootstrap to approximate the estimate’s

variance.
I But critical values still need to be known.
I It got the name since “it is a rough-and-ready tool that can

improvise a solution for a variety of problems.”
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Jackknife
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Bootstrap: simulation

## 95% CI from the asymptotic method: 2.295 3.573

## 95% CI from the percentile t-method: 2.311 3.535

## 95% CI from the percentile method: 2.33 3.564

## 95% CI from the Efron method: 2.303 3.537
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Bootstrap: caveats

I Bootstrap is not always valid.
I It requires the estimtor to be smooth for the empirical

distribution.
I It thus fails when the estimator involves truncation or fixed

quantities.
I We cannot use bootstrap to infer the extremum (e.g.,
τ̂ = maxYi) or constrained estimators (e.g., τ̂ = max{τ̂∗, 0}).

I In causal inference, a well-known example is that bootstrap
does not work for nearest-neighbor matching (Abadie and
Imbens 2008).
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Bootstrap: caveats

I Applying bootstrap to causal inference creates extra
complexities.

I Note that we are resampling {Yi ,Di}Ni=1 not
{Yi(0),Yi(1),Di}Ni=1.

I At most, we can approximate the marginal distribution of Yi(0)
and Yi(1), but not their joint distribution.

I We thus ignore the variance caused by treatment effect
heterogeneity by using bootstrap.

I The result will be similar to that from using the Neyman
variance estimator.

I The problem is identified by Imbens and Menzel (2018).
I They provide a solution to increase the precision of estimation

based on the idea in Aronow et al. (2014).
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