Weighting

Ye Wang University of North Carolina at Chapel Hill

Linear Methods in Causal Inference POL1784

Review

- Under strong ignorability, we can use matching to account for the influence of confounders.
- We can directly match on the confounders (NN matching) or on the estimated propensity score (PS matching).
- NN matching is biased when there are more than one continuous confounders.
- But bias correction estimators exist and the bias is negligible under certain conditions.
- Classical bootstrap does not work for NN matching, but wild bootstrap does.

Weighting

- Another choice is to estimate the propensity scores and use either the HT or the HA estimator.
- In observational studies, they are named as the inverse probability of treatment weighting (IPW) estimator and the stabilized IPW estimator.
- Since the propensity scores are estimated, neither estimator is unbiased.
- As long as the propensity scores are consistently estimated and converging at a fast rate, both are consistent and asymptotically normal.
- The estimation of the propensity scores introduces extra uncertainties to the ATE estimate.

Weighting: estimation

Remember that the HT and HA estimators take the form of:

$$\hat{\tau}_{HT} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{D_i Y_i}{\hat{g}(\mathbf{X}_i)} - \frac{(1-D_i) Y_i}{1-\hat{g}(\mathbf{X}_i)} \right),$$

$$\hat{\tau}_{HA} = \frac{\sum_{i=1}^{N} D_i Y_i / \hat{g}(\mathbf{X}_i)}{\sum_{i=1}^{N} D_i / \hat{g}(\mathbf{X}_i)} - \frac{\sum_{i=1}^{N} (1 - D_i) Y_i / (1 - \hat{g}(\mathbf{X}_i))}{\sum_{i=1}^{N} (1 - D_i) / (1 - \hat{g}(\mathbf{X}_i))}.$$

We can estimate the ATT or ATC using similar ideas:

$$\hat{\tau}_{HA,ATT} = \frac{\sum_{i=1}^{N} D_i Y_i}{\sum_{i=1}^{N} D_i} - \frac{\sum_{i=1}^{N} (1 - D_i) \hat{g}(\mathbf{X}_i) Y_i / (1 - \hat{g}(\mathbf{X}_i))}{\sum_{i=1}^{N} (1 - D_i) \hat{g}(\mathbf{X}_i) / (1 - \hat{g}(\mathbf{X}_i))}.$$

Weighting: estimation

- ► To implement the Hajek estimator for the ATE, we first estimate the propensity score (using logistic regression) and obtain ĝ(X_i).
- Next, we construct the weight,

$$W_i = \frac{D_i}{\hat{g}(\mathbf{X}_i)} + \frac{1 - D_i}{1 - \hat{g}(\mathbf{X}_i)}$$

- Finally, we regress Y_i on D_i and weight each unit by W_i .
- For the Hajek estimator for the ATT,

$$W_i = D_i + rac{(1-D_i)\hat{g}(\mathbf{X}_i)}{1-\hat{g}(\mathbf{X}_i)}.$$

- If g(X_i) is known, we can just use the HC2 variance estimator in regression.
- ▶ But g(X_i) is estimated.
- We can write

$$\hat{\tau} - au = \hat{ au} - \hat{ au}(g) + \hat{ au}(g) - au,$$

where $\hat{\tau}(g)$ is the "oracle estimator:"

$$\hat{ au}_{HT}(g) = rac{1}{N}\sum_{i=1}^N \left(rac{D_iY_i}{g(\mathbf{X}_i)} - rac{(1-D_i)Y_i}{1-g(\mathbf{X}_i)}
ight).$$

Then, we have

$$Var[\hat{\tau} - \tau] = Var[\hat{\tau}(g) - \tau] + Var[\hat{\tau} - \hat{\tau}(g)] - 2Cov[\hat{\tau} - \hat{\tau}(g), \hat{\tau}(g) - \tau].$$

- ► If we conduct inference assuming g(X_i) is known, then the second and the third term in the expression are ignored.
- However, we can prove that

$$Var[\hat{\tau} - \tau] \leq Var[\hat{\tau}(g) - \tau],$$

hence the variance will be conservative if we ignore the extra terms.

For the HT estimator, if the logistic regression model is correctly specified, then the extra terms equal to

$$-E\left[\frac{(g(\mathbf{X}_i)m_0(\mathbf{X}_i)+(1-g(\mathbf{X}_i))m_1(\mathbf{X}_i))^2}{g(\mathbf{X}_i)(1-g(\mathbf{X}_i))}\right]\leq 0.$$

- The result implies that using the estimated propensity scores is more efficient than using the true propensity scores (suppose we know it)!
- ► In the Bernoulli trial, the propensity score is p for any unit and the estimated propensity score is ∑_{i=1}^ND_i/N.
- Therefore, the IPW estimator using the true propensity scores is the Horvitz-Thompson estimator, while the one using the estimated propensity scores is the Hajek estimator.
- We already know that the latter is more efficient!
- In observational studies, this conclusion was first proved by Hirano, Imbens, and Ridder (2003).
- Intuitively, estimating the propensity scores extracts more information from data.

- The IPW estimator using the estimated propensity scores reaches the efficiency bound derived by Hahn (1998).
- ▶ Let's define $m_1(\mathbf{X}_i) = E[Y_i(1)|\mathbf{X}_i], m_0(\mathbf{X}_i) = E[Y_i(0)|\mathbf{X}_i], \sigma_1^2(\mathbf{X}_i) = Var[Y_i(1)|\mathbf{X}_i], \text{ and } \sigma_0^2(\mathbf{X}_i) = Var[Y_i(0)|\mathbf{X}_i], \text{ then the bound is}$

$$E\left[\frac{\sigma_1^2(\mathbf{X}_i)}{g(\mathbf{X}_i)} + \frac{\sigma_0^2(\mathbf{X}_i)}{1 - g(\mathbf{X}_i)} + (m_1(\mathbf{X}_i) - m_0(\mathbf{X}_i) - \tau)^2\right].$$

▶ No estimator under strong ignorability can do better than this.

Weighting: pros and cons

- Weighting does not require bias correction or drop any units.
- But we need to have accurate predictions for the propensity score.
- ► There is a trade-off between convergence rate and accuracy.
- In practice, the estimated propensity score can be very close to 0 or 1.
- It is caused by the failure of positivity.
- ► Then, the HT estimator will have a huge variance.
- The HA estimator performs better in this case.
- One choice to trim units whose propensity score takes extreme values (Ma and Wang 2020).
- It alters the estimand and causes bias.
- Another choice is to use the covariate balancing propensity scores (Imai and Ratkovic 2014).

▶ We have proved that the propensity score is a balance score:

 $D_i \perp \mathbf{X}_i | g(\mathbf{X}_i).$

- We can exploit this property to improve the accuracy of our estimation.
- For any function of the covariates, $f(\mathbf{X}_i)$, we should have:

$$E\left[\frac{D_i f(\mathbf{X}_i)}{g(\mathbf{X}_i)} - \frac{(1-D_i)f(\mathbf{X}_i)}{1-g(\mathbf{X}_i)}\right] = 0.$$

In finite sample, we should expect

$$\sum_{i=1}^{N} \left[\frac{D_i f(\mathbf{X}_i)}{g(\mathbf{X}_i)} - \frac{(1-D_i) f(\mathbf{X}_i)}{1-g(\mathbf{X}_i)} \right] \approx 0.$$

▶ We can set f(X_i) to be each of the covariates or their higher order terms.

Remember that we often estimate the propensity score via the logistic model:

$$g(\mathbf{X}_i) = rac{e^{\mathbf{X}_ieta}}{1+e^{\mathbf{X}_ieta}}.$$

The first order condition is

$$\sum_{i=1}^{N} \left[\frac{D_i g'(\mathbf{X}_i)}{g(\mathbf{X}_i)} - \frac{(1-D_i)g'(\mathbf{X}_i)}{1-g(\mathbf{X}_i)} \right] = 0.$$

• Therefore, the same balance condition holds for $g'(\mathbf{X}_i)$ as well.

We can combine all these balance conditions to estimate propensity scores more precisely.

- We try to find a set of values, {p̂_i}^N_{i=1} = {ĝ(X_i)}^N_{i=1}, such that all the balance conditions are satisfied.
- ► In logistic regression, we have only one balance condition.
- Estimation could be done by the General Methods of Moments (Hansen 1982).
- Suppose we have K balance conditions: $\Psi(\mathbf{p}) = (\Psi_1(\mathbf{p}), \Psi_2(\mathbf{p}), \dots, \Psi_K(\mathbf{p}))$, where $\mathbf{p} = (p_1, p_2, \dots, p_N)$.
- We try the following problem

$$\{\hat{p}_i\}_{i=1}^N = rgmin_{\mathbf{p}} \hat{E}[\Psi]' \widehat{Var}^{-1}[\Psi] \hat{E}[\Psi]$$

• We then rely on these $\{\hat{p}_i\}_{i=1}^N$ to construct the IPW estimators.

- CBPS can handle continuous treatment variables (Fong, Hazlett, and Imai 2018).
- ► We find weights that are orthogonal to **X**, *D*, and their interaction

$$\sum_{i=1}^{N} p_i \mathbf{X}_i = 0, \sum_{i=1}^{N} p_i D_i = 0$$
$$\sum_{i=1}^{N} p_i (\mathbf{X}_i * D_i) = 0, \sum_{i=1}^{N} p_i = \Lambda$$

- ▶ The properties of CBPS are derived in Fan et al. (2016).
- CBPS forces the propensity scores to balance the covariates, hence the estimates are less likely to be extreme.

- ## The OLS estimate is 1794.343
- ## The SE of OLS estimate is 670.9967
- ## The Lin regression estimate is 1583.468
- ## The SE of Lin regression estimate is 678.0574

The IPW ATT estimate is 2796.213

The SE of IPW ATT estimate is 862.6273

##		mean.Tr	mean.Co	sdiff	T pval
##	age	25.816	23.812	28.012	0.002
##	education	10.346	10.286	2.977	0.772
##	black	0.843	0.818	6.853	0.483
##	hispanic	0.059	0.120	-25.665	0.021
##	married	0.189	0.093	24.449	0.005
##	nodegree	0.708	0.716	-1.698	0.858
##	re74	2095.574	1434.631	13.526	0.130
##	re75	1532.056	1344.515	5.826	0.511
##	u74	0.708	0.812	-22.795	0.012
##	u75	0.600	0.413	38.134	0.000

The IPW ATT estimate is 1767.74

The SE of IPW ATT estimate is 1116.721

##		mean.Tr	mean.Co	sdiff	T pval
##	age	27.021	25.382	23.171	0.053
##	education	10.479	10.844	-17.496	0.136
##	black	0.826	0.886	-15.679	0.151
##	hispanic	0.069	0.025	17.252	0.080
##	married	0.188	0.131	14.349	0.194
##	nodegree	0.674	0.691	-3.689	0.753
##	re74	1900.917	2186.548	-7.085	0.580
##	re75	1204.959	1682.989	-23.763	0.107
##	u74	0.681	0.688	-1.492	0.899
##	u75	0.604	0.635	-6.182	0.598

[1] "Finding ATT with T=1 as the treatment. Set ATT=2 t

The IPW ATT estimate is 2437.704

The SE of IPW ATT estimate is 896.333

##		mean.Tr	mean.Co	T pval
##	age	25.816	25.889	1
##	education	10.346	10.330	1
##	black	0.843	0.838	1
##	hispanic	0.059	0.061	1
##	married	0.189	0.192	1
##	nodegree	0.708	0.707	1
##	re74	2095.574	2134.026	1
##	re75	1532.056	1555.604	1
##	u74	0.708	0.707	1
##	u75	0.600	0.616	1

References I

Fan, Jianqing, Kosuke Imai, Han Liu, Yang Ning, Xiaolin Yang, et al. 2016. "Improving Covariate Balancing Propensity Score: A Doubly Robust and Efficient Approach." URL: Https://Imai. Fas. Harvard. Edu/Research/CBPStheory. Html.

- Fong, Christian, Chad Hazlett, and Kosuke Imai. 2018. "Covariate Balancing Propensity Score for a Continuous Treatment: Application to the Efficacy of Political Advertisements." *The Annals of Applied Statistics* 12 (1): 156–77.
- Hahn, Jinyong. 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects." *Econometrica*, 315–31.
- Hansen, Lars Peter. 1982. "Large Sample Properties of Generalized Method of Moments Estimators." *Econometrica: Journal of the Econometric Society*, 1029–54.

Hirano, Keisuke, Guido W Imbens, and Geert Ridder. 2003."Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score." *Econometrica* 71 (4): 1161–89.

- Imai, Kosuke, and Marc Ratkovic. 2014. "Covariate Balancing Propensity Score." Journal of the Royal Statistical Society: Series B: Statistical Methodology, 243–63.
- Ma, Xinwei, and Jingshen Wang. 2020. "Robust Inference Using Inverse Probability Weighting." *Journal of the American Statistical Association*, 1–10.