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Review

I Under strong ignorability, we can use matching to account for
the influence of confounders.

I We can directly match on the confounders (NN matching) or
on the estimated propensity score (PS matching).

I NN matching is biased when there are more than one
continuous confounders.

I But bias correction estimators exist and the bias is negligible
under certain conditions.

I Classical bootstrap does not work for NN matching, but wild
bootstrap does.
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Weighting

I Another choice is to estimate the propensity scores and use
either the HT or the HA estimator.

I In observational studies, they are named as the inverse
probability of treatment weighting (IPW) estimator and the
stabilized IPW estimator.

I Since the propensity scores are estimated, neither estimator is
unbiased.

I As long as the propensity scores are consistently estimated and
converging at a fast rate, both are consistent and
asymptotically normal.

I The estimation of the propensity scores introduces extra
uncertainties to the ATE estimate.
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Weighting: estimation

I Remember that the HT and HA estimators take the form of:

τ̂HT = 1
N

N∑
i=1

( DiYi
ĝ(Xi )

− (1− Di )Yi
1− ĝ(Xi )

)
,

τ̂HA =
∑N

i=1 DiYi/ĝ(Xi )∑N
i=1 Di/ĝ(Xi )

−
∑N

i=1(1− Di )Yi/(1− ĝ(Xi ))∑N
i=1(1− Di )/(1− ĝ(Xi ))

.

I We can estimate the ATT or ATC using similar ideas:

τ̂HA,ATT =
∑N

i=1 DiYi∑N
i=1 Di

−
∑N

i=1(1− Di )ĝ(Xi )Yi/(1− ĝ(Xi ))∑N
i=1(1− Di )ĝ(Xi )/(1− ĝ(Xi ))

.
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Weighting: estimation

I To implement the Hajek estimator for the ATE, we first
estimate the propensity score (using logistic regression) and
obtain ĝ(Xi ).

I Next, we construct the weight,

Wi = Di
ĝ(Xi )

+ 1− Di
1− ĝ(Xi )

.

I Finally, we regress Yi on Di and weight each unit by Wi .
I For the Hajek estimator for the ATT,

Wi = Di + (1− Di )ĝ(Xi )
1− ĝ(Xi )

.
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Weighting: inference
I If g(Xi ) is known, we can just use the HC2 variance estimator

in regression.
I But g(Xi ) is estimated.
I We can write

τ̂ − τ = τ̂ − τ̂(g) + τ̂(g)− τ,

where τ̂(g) is the “oracle estimator:”

τ̂HT (g) = 1
N

N∑
i=1

( DiYi
g(Xi )

− (1− Di )Yi
1− g(Xi )

)
.

I Then, we have

Var [τ̂ − τ ] =Var [τ̂(g)− τ ] + Var [τ̂ − τ̂(g)]
− 2Cov [τ̂ − τ̂(g), τ̂(g)− τ ].
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Weighting: inference

I If we conduct inference assuming g(Xi ) is known, then the
second and the third term in the expression are ignored.

I However, we can prove that

Var [τ̂ − τ ] ≤ Var [τ̂(g)− τ ],

hence the variance will be conservative if we ignore the extra
terms.

I For the HT estimator, if the logistic regression model is
correctly specified, then the extra terms equal to

−E
[

(g(Xi )m0(Xi ) + (1− g(Xi ))m1(Xi ))2

g(Xi )(1− g(Xi ))

]
≤ 0.
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Weighting: inference

I The result implies that using the estimated propensity scores is
more efficient than using the true propensity scores (suppose
we know it)!

I In the Bernoulli trial, the propensity score is p for any unit and
the estimated propensity score is

∑N
i=1 Di
N .

I Therefore, the IPW estimator using the true propensity scores
is the Horvitz-Thompson estimator, while the one using the
estimated propensity scores is the Hajek estimator.

I We already know that the latter is more efficient!
I In observational studies, this conclusion was first proved by

Hirano, Imbens, and Ridder (2003).
I Intuitively, estimating the propensity scores extracts more

information from data.
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Weighting: inference

I The IPW estimator using the estimated propensity scores
reaches the efficiency bound derived by Hahn (1998).

I Let’s define m1(Xi ) = E [Yi (1)|Xi ], m0(Xi ) = E [Yi (0)|Xi ],
σ2

1(Xi ) = Var [Yi (1)|Xi ], and σ2
0(Xi ) = Var [Yi (0)|Xi ], then the

bound is

E
[
σ2

1(Xi )
g(Xi )

+ σ2
0(Xi )

1− g(Xi )
+ (m1(Xi )−m0(Xi )− τ)2

]
.

I No estimator under strong ignorability can do better than this.
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Weighting: pros and cons

I Weighting does not require bias correction or drop any units.
I But we need to have accurate predictions for the propensity

score.
I There is a trade-off between convergence rate and accuracy.
I In practice, the estimated propensity score can be very close to

0 or 1.
I It is caused by the failure of positivity.
I Then, the HT estimator will have a huge variance.
I The HA estimator performs better in this case.
I One choice to trim units whose propensity score takes extreme

values (Ma and Wang 2020).
I It alters the estimand and causes bias.
I Another choice is to use the covariate balancing propensity

scores (Imai and Ratkovic 2014).
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Covariate balancing propensity scores
I We have proved that the propensity score is a balance score:

Di ⊥ Xi |g(Xi ).

I We can exploit this property to improve the accuracy of our
estimation.

I For any function of the covariates, f (Xi ), we should have:

E
[Di f (Xi )

g(Xi )
− (1− Di )f (Xi )

1− g(Xi )

]
= 0.

I In finite sample, we should expect

N∑
i=1

[Di f (Xi )
g(Xi )

− (1− Di )f (Xi )
1− g(Xi )

]
≈ 0.

I We can set f (Xi ) to be each of the covariates or their higher
order terms.
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Covariate balancing propensity scores

I Remember that we often estimate the propensity score via the
logistic model:

g(Xi ) = eXiβ

1 + eXiβ
.

I The first order condition is
N∑

i=1

[Dig ′(Xi )
g(Xi )

− (1− Di )g ′(Xi )
1− g(Xi )

]
= 0.

I Therefore, the same balance condition holds for g ′(Xi ) as well.
I We can combine all these balance conditions to estimate

propensity scores more precisely.
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Covariate balancing propensity scores

I We try to find a set of values, {p̂i}Ni=1 = {ĝ(Xi )}Ni=1, such
that all the balance conditions are satisfied.

I In logistic regression, we have only one balance condition.
I Estimation could be done by the General Methods of Moments

(Hansen 1982).
I Suppose we have K balance conditions:

Ψ(p) = (Ψ1(p),Ψ2(p), . . . ,ΨK (p)), where
p = (p1, p2, . . . , pN).

I We try the following problem

{p̂i}Ni=1 = argmin
p

Ê [Ψ]′V̂ar
−1

[Ψ]Ê [Ψ]

I We then rely on these {p̂i}Ni=1 to construct the IPW estimators.

13 / 22



Covariate balancing propensity scores

I CBPS can handle continuous treatment variables (Fong,
Hazlett, and Imai 2018).

I We find weights that are orthogonal to X, D, and their
interaction

N∑
i=1

piXi = 0,
N∑

i=1
piDi = 0

N∑
i=1

pi (Xi ∗ Di ) = 0,
N∑

i=1
pi = N

I The properties of CBPS are derived in Fan et al. (2016).
I CBPS forces the propensity scores to balance the covariates,

hence the estimates are less likely to be extreme.
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Weighting: application

## The OLS estimate is 1794.343

## The SE of OLS estimate is 670.9967

## The Lin regression estimate is 1583.468

## The SE of Lin regression estimate is 678.0574
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Weighting: application
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Weighting: application

## The IPW ATT estimate is 2796.213

## The SE of IPW ATT estimate is 862.6273

## mean.Tr mean.Co sdiff T pval
## age 25.816 23.812 28.012 0.002
## education 10.346 10.286 2.977 0.772
## black 0.843 0.818 6.853 0.483
## hispanic 0.059 0.120 -25.665 0.021
## married 0.189 0.093 24.449 0.005
## nodegree 0.708 0.716 -1.698 0.858
## re74 2095.574 1434.631 13.526 0.130
## re75 1532.056 1344.515 5.826 0.511
## u74 0.708 0.812 -22.795 0.012
## u75 0.600 0.413 38.134 0.000
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Weighting: application

## The IPW ATT estimate is 1767.74

## The SE of IPW ATT estimate is 1116.721

## mean.Tr mean.Co sdiff T pval
## age 27.021 25.382 23.171 0.053
## education 10.479 10.844 -17.496 0.136
## black 0.826 0.886 -15.679 0.151
## hispanic 0.069 0.025 17.252 0.080
## married 0.188 0.131 14.349 0.194
## nodegree 0.674 0.691 -3.689 0.753
## re74 1900.917 2186.548 -7.085 0.580
## re75 1204.959 1682.989 -23.763 0.107
## u74 0.681 0.688 -1.492 0.899
## u75 0.604 0.635 -6.182 0.598
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Weighting: application
## [1] "Finding ATT with T=1 as the treatment. Set ATT=2 to find ATT with T=0 as the treatment"
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Weighting: application

## The IPW ATT estimate is 2437.704

## The SE of IPW ATT estimate is 896.333

## mean.Tr mean.Co T pval
## age 25.816 25.889 1
## education 10.346 10.330 1
## black 0.843 0.838 1
## hispanic 0.059 0.061 1
## married 0.189 0.192 1
## nodegree 0.708 0.707 1
## re74 2095.574 2134.026 1
## re75 1532.056 1555.604 1
## u74 0.708 0.707 1
## u75 0.600 0.616 1
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