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Review

Under strong ignorability, we can use matching to account for
the influence of confounders.

We can directly match on the confounders (NN matching) or
on the estimated propensity score (PS matching).

NN matching is biased when there are more than one
continuous confounders.

But bias correction estimators exist and the bias is negligible
under certain conditions.

Classical bootstrap does not work for NN matching, but wild
bootstrap does.
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Weighting

Another choice is to estimate the propensity scores and use
either the HT or the HA estimator.

In observational studies, they are named as the inverse
probability of treatment weighting (IPW) estimator and the
stabilized IPW estimator.

Since the propensity scores are estimated, neither estimator is
unbiased.

As long as the propensity scores are consistently estimated and
converging at a fast rate, both are consistent and
asymptotically normal.

The estimation of the propensity scores introduces extra
uncertainties to the ATE estimate.



Weighting: estimation

» Remember that the HT and HA estimators take the form of:

. (1-Dy)Yi
THT = NZ( ,' 1— (X,)>’

o — YL DiYi/E(X)  Yi(1 - Dy)Yi/(1 - &(X)))
X1 Di/8(Xi) i1 -D)/(1-&(X;)

» We can estimate the ATT or ATC using similar ideas:

YR, DY _ZN (1 — Di)&(X:)Yi/(1 — &(Xi))

THAATT = =y
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Weighting: estimation

» To implement the Hajek estimator for the ATE, we first
estimate the propensity score (using logistic regression) and

obtain g(X;).
> Next, we construct the weight,
D; 1-D;
W; = — + ~ .
LX) 1-g(X))
> Finally, we regress Y; on D; and weight each unit by W;.
» For the Hajek estimator for the ATT,

(1 - Di)g(X;)
Y- TOR

W; = D;



Weighting: inference

» If g(X;) is known, we can just use the HC2 variance estimator
in regression.

» But g(X;) is estimated.

» We can write

F-r=17-7(g)+7(g) -7,

where 7(g) is the "“oracle estimator:”

. 1 & (DY, (1-Dy)Y
ThT(8) = N ; (g(X;) 1—g(X)) ) '
» Then, we have
Var[# — 7] =Var[t(g) — 7] + Var[t — 7(g)]
— 2Cov[t — #(g), (&) — 7).
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Weighting: inference

» If we conduct inference assuming g(X;) is known, then the
second and the third term in the expression are ignored.
» However, we can prove that

Var[t — 7] < Var[7(g) — 7],

hence the variance will be conservative if we ignore the extra
terms.

» For the HT estimator, if the logistic regression model is
correctly specified, then the extra terms equal to

(g(Xi)mo(X;) + (1 — g(X;))mi(X;))? <o

£ 2(X)(1—g(X) =




Weighting: inference

» The result implies that using the estimated propensity scores is
more efficient than using the true propensity scores (suppose
we know it)!

> In the Bernoulli trial, the propensity As/core is p for any unit and

the estimated propensity score is #

» Therefore, the IPW estimator using the true propensity scores
is the Horvitz-Thompson estimator, while the one using the
estimated propensity scores is the Hajek estimator.

» We already know that the latter is more efficient!

> In observational studies, this conclusion was first proved by
Hirano, Imbens, and Ridder (2003).

> Intuitively, estimating the propensity scores extracts more
information from data.



Weighting: inference

» The IPW estimator using the estimated propensity scores
reaches the efficiency bound derived by Hahn (1998).

» Let's define my(X;) = E[Y;i(1)|X;], mo(X;) = E[Y;(0)|X/],
o2(X;) = Var[Y;(1)|X;], and 03(X;) = Var[Y;(0)|X;], then the
bound is

a3 (Xi) | a5(Xi)

N — e (X) — 2]
2X) T 1= gpxy) T M) = mo(Xi) =)

» No estimator under strong ignorability can do better than this.



Weighting: pros and cons
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Weighting does not require bias correction or drop any units.
But we need to have accurate predictions for the propensity
score.

There is a trade-off between convergence rate and accuracy.
In practice, the estimated propensity score can be very close to
0orl.

It is caused by the failure of positivity.

Then, the HT estimator will have a huge variance.

The HA estimator performs better in this case.

One choice to trim units whose propensity score takes extreme
values (Ma and Wang 2020).

It alters the estimand and causes bias.

Another choice is to use the covariate balancing propensity
scores (Imai and Ratkovic 2014).
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Covariate balancing propensity scores

» We have proved that the propensity score is a balance score:
Di L Xi|g(X)).

» We can exploit this property to improve the accuracy of our
estimation.
» For any function of the covariates, (X;), we should have:

DiF(X;) (1—D)F(X)]
E[g(x,-) Ty ]‘0'

> In finite sample, we should expect

-~ [DF(X) (L= D)X
; { g(xi) 1 _g(X,') ] ~ 0.

» We can set f(X;) to be each of the covariates or their higher
order terms.
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Covariate balancing propensity scores

» Remember that we often estimate the propensity score via the
logistic model:
eXiB
8 = 1 ek

The first order condition is

N
2.
i=1

v

0.

Dig'(Xi) — (1-Di)g'(Xi)] _
g(X;) 1—g(X;)

v

We can combine all these balance conditions to estimate
propensity scores more precisely.

v

Therefore, the same balance condition holds for g’(X;) as well.



Covariate balancing propensity scores

» We try to find a set of values, {p;}; = {&(X;)};, such
that all the balance conditions are satisfied.

> In logistic regression, we have only one balance condition.

» Estimation could be done by the General Methods of Moments
(Hansen 1982).

» Suppose we have K balance conditions:
V(p) = (Vi(p), Va(p), ..., Vk(p)), where
p=(p1,P2,---,Pn)-

» We try the following problem
[}y = argmin E[W] Var  [V]E[Y]

» We then rely on these {p;}/.; to construct the IPW estimators.
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Covariate balancing propensity scores

» CBPS can handle continuous treatment variables (Fong,
Hazlett, and Imai 2018).

» We find weights that are orthogonal to X, D, and their
interaction

N N
ZP;X,’ = O,ZP,'D/ =0
i—1 i—1

N N
Zpi(xi* D;) = O,Zpi =N
i—1

i=1
» The properties of CBPS are derived in Fan et al. (2016).

» CBPS forces the propensity scores to balance the covariates,
hence the estimates are less likely to be extreme.
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Weighting: application

## The OLS estimate is 1794.343
## The SE of OLS estimate is 670.9967
## The Lin regression estimate is 1583.468

## The SE of Lin regression estimate is 678.0574

15 /22



Weighting: application

Density

50
|

Propensity score estimates
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Weighting: application

## The IPW ATT estimate is 2796.213

#it

##
#it
##
#it
##
#Hit
##
##
##
##
##

The SE of IPW ATT estimate is 862.6273

mean.Tr
age 25.816
education  10.346
black 0.843
hispanic 0.059
married 0.189
nodegree 0.708
re74 2095.574
re75 1532.056
ur4 0.708
u7b5 0.600

mean.Co

23.
10.
0.

0.

0.

0.
1434.
1344.
0.

0.

812
286
818
120
093
716
631
515
812
413

sdiff T pval

28.
2.
6.

-25.

24.

-1.

13.
5.

-22.

38.

012
o771
853
665
449
698
526
826
795
134

O O O O O O O O oo

.002
772
.483
.021
.005
.858
.130
.511
.012
.000
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Weighting: application

## The IPW ATT estimate is 1767.74

#it

##
#it
##
#it
##
#Hit
##
##
##
##
##

The SE of IPW ATT estimate is 1116.721

mean.Tr mean.Co

age 27.021
education  10.479
black 0.826
hispanic 0.069
married 0.188
nodegree 0.674
re74 1900.917
re75 1204.959
ur4 0.681

u75 0.604

25.
10.

382
844

.886
.025
.131
.691

548
989

.688
.635

sdiff T pval

23.
-17.
-15.

17.

14.

-3.

-7.
-23.

-1.

-6.

171
496
679
252
349
689
085
763
492
182

O O O O O O O O oo

.053
.136
.151
.080
.194
. 753
.580
.107
.899
.598
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Weighting: application
## [1] "Finding ATT with T=1 as the treatment. Set ATT=2 -

8000 10000
| |

Density
6000

4000

2000

T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10

Propensity score estimates
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Weighting: application

##

#it

##
#it
##
#it
##
#Hit
##
##
##
##
##

The IPW ATT estimate is 2437.704

The SE of IPW ATT estimate is 896.333

mean.Tr mean.Co T pval
age 25.816  25.889 1
education  10.346 10.330 1
black 0.843 0.838 1
hispanic 0.059 0.061 1
married 0.189 0.192 1
nodegree 0.708 0.707 1
re74 2095.574 2134.026 1
re75 1532.056 1555.604 1
u74 0.708 0.707 1
u7b5 0.600 0.616 1
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