Heterogeneous Treatment Effects I

Ye Wang University of North Carolina at Chapel Hill

Linear Methods in Causal Inference POL1784

Review

- We discussed the causal interpretation of the OLS estimator in the previous class.
- In randomized experiments, the OLS estimator equals the Hajek estimator.
- The HC2 variance estimator equals the Neyman variance estimator.
- We may use regression adjustment to control for covariates and enhance the efficiency of the OLS estimator.
- This is justified by the FWL theorem when the model specification is correct.
- Otherwise, we can rely on Lin's regression to ensure the increase in efficiency.

From ATE to CATE

Sometimes we want to know the average treatment effect on a sub-population:

$$\tau(\mathbf{x}) = E[\tau_i | \mathbf{X} = \mathbf{x}].$$

- This is known as the conditional average treatment effect (CATE).
- It allows us to see how the effects vary within the population and helps researchers to design more personalized policy or medicine.
- ▶ Note that **X** should not be affected by the treatment.
- It is sometimes called the moderator.

From CATE to optimal assignment

- CATE allows us to figure out the optimal assignment of the treatment.
- It provides a natural measure of the benefit for each subgroup.
- An assignment mechanism is a mapping from the covariates to the probability of being treated.
- The optimal assignment mechanism hinges on our knowledge of CATE.
- If the average effect is positive for women and negative for men, we should only treat women in the sample:

$$P(D_i = 1) = egin{cases} 1 & \textit{male}_i = 0 \ 0 & \textit{male}_i = 1 \end{cases}$$

Optimal assignment

- ▶ In general, we want to find a mapping (also known as a policy) $\pi(\mathbf{X}) \in \Pi$ that maximizes a welfare function $W(\pi)$.
- $\pi(\mathbf{X})$ can be deterministic or stochastic.
- We usually need to impose restrictions on Π, such that it is not too complicated.
- ► For example, we can rely on the linear eligibility score:

$$P(D_i = 1) = \begin{cases} 1 & \beta_0 + \sum_{p=1}^{P} \beta_p x_{ip} \ge 0, \\ 0 & \text{Otherwise.} \end{cases}$$

The optimal policy in Π may not be the first-best policy:

$$P(D_i=1) = egin{cases} 1 & au(\mathbf{X}_i) \geq 0, \ 0 & ext{Otherwise.} \end{cases}$$

Optimal assignment

- $W(\pi)$ is decided by the objective of the researcher.
- Do we want to maximize the total utility? Do we want to prevent harm? Do we want to promote fairness?
- Different objects lead to different $\pi^*(\mathbf{X})$.
- If we know $\tau(\mathbf{x})$, finding $\pi^*(\mathbf{X})$ is a pure optimization problem.
- E.g, we can find $\beta = (\beta_0, \beta_1, \dots, \beta_P)$ that maximizes

$$\sum_{i=1}^{N} \tau(\mathbf{X}_{i}) \mathbf{1} \bigg\{ \beta_{0} + \sum_{p=1}^{P} \beta_{p} x_{ip} \ge 0 \bigg\}.$$

In practice, we need to estimate *τ*(**x**) first and find *π̂*^{*}(**X**) that minimizes the "regret:"

$$E[W(\pi^*(\mathbf{X}_i)) - W(\hat{\pi}^*(\mathbf{X}_i))].$$

Optimal assignment

- Scholars in this field are working on deriving the optimal assignment mechanism in various scenarios.
- How do we incorporate different constraints into this problem?
- What if the treatment status of one unit affects the outcome of other units?
- In dynamic experiments, how can we learn the optimal combination of treatments and implement it ASAP?
- How do we combine information from multiple studies to make policy learning more accurate?

From CATE to external validity

- CATE is also closely connected to the external validity of a study.
- Remember that if we have a representative sample, the estimate of SATE is consistent for PATE as well.
- But this is rarely the case.
- We want to know some general laws of human behavior.
- But the sample often comes from one country or even one county.
- How do we generalize our estimate obtained from one sample to the population?

External validity

- ▶ We need to understand how SATE differs from PATE.
- One possibility: it is completely driven by the difference in demographic composition.
- Suppose the only variable that affects the effect's size is age and our experiment is conducted in a county with more senior people.
- To generalize the conclusion to the whole country, we just need to reweigh our sample with the proportion of senior residents in America.
- A more severe issue is known as the site-selection bias.
- There are unobservable factors that are correlated with both the effects and where the experiment is implemented.
- It is an open question in the literature.

Estimate CATE

- The remaining question: how do we estimate the CATE?
- If X only includes binary variables, we can estimate the ATE conditional on each value of X.
- It is equivalent to estimating a regression model with an interaction term:

$$Y_i = \mu + \tau D_i + \beta X_i + \delta D_i * X_i + \varepsilon_i.$$

- Such a model is "saturated" as it covers all the combinations of D_i and X_i.
- ► The estimated effect of D_i equals
 ^ˆ
 [↑] if X_i = 0 and
 ^ˆ
 [↑] +
 ^ˆ
 ^ô if X_i = 1.

Estimate CATE

- Note that X_i is not randomly assigned, hence the difference between τ(1) and τ(0) does not have a causal interpretation.
- E.g., we cannot say "turning old increases the effect by 20%."
- It is different from

$$Y_i = \mu + \tau D_{1i} + \beta D_{2i} + \delta D_{1i} * D_{2i} + \varepsilon_i,$$

where both D_1 and D_2 are randomly assigned.

If interested in the interaction effect, we have to control for confounders that affect X_i.

Estimate CATE

- If X includes continuous variables, the convention is to fit the same regression model.
- We have learned that Lin's regression is the better approach:

$$Y_i = \mu + \tau D_i + (X_i - \bar{X})\beta + \delta D_i * (X_i - \bar{X}) + \varepsilon_i.$$

- The estimated moderator effect equals $\hat{\tau} + \hat{\delta}(X_i \bar{X})$, a linear function of X.
- There is no guarantee that this linear relationship holds.

Caveats of interaction models

- Consider the following application in Malesky, Schuler, and Tran (2012).
- It is an experiment implemented in Vietnam.
- Treatment: an online profile for randomly selected legislators that documents their performance.
- Outcome: questions a legislator asked in Congress.
- Their ATE estimate is not significant.
- But the interaction model shows that the effect is significant in regions where the Internet penetration rate is high.

Caveats of interaction models

 Hainmueller, Mummolo, and Xu (2019) show that the estimate is entirely driven by certain regions.

Caveats of interaction models

- This example illuminates the problems of relying on linear models.
- The predictions can be very inaccurate if the true pattern is not quite linear.
- The results can be influenced by a few observations in the sample.
- It is because regression is a global model.

Estimate the CATE flexibly

Remember that we want to estimate

$$\tau(x) = E[\tau_i | X_i = x].$$

without assuming a linear relationship.

- Let's first assume we know the value of each τ_i .
- It becomes a problem of estimating the conditional expectation of a variable.
- This is a prediction problem rather than a causal inference problem.

Estimate conditional expectation

- Later we discuss how to deal with the problem of estimating the CATE using similar techniques.
- We have learn the regression approach, which assumes that $\tau(x) = \beta x$.
- Instead of linearity, let's only assume the smoothness of $\tau(x)$.
- This is much weaker and satisfied in many scenarios.
- ► A common form of such an assumption is the sth order derivative of \(\tau\) exists.

Estimate conditional expectation

Х

The binscatter estimator

- Smoothness means that if x' is close to x, then τ(x') is close to τ(x).
- Therefore, we can estimate $\tau(x)$ using information from $\tau(x')$.
- A natural estimator is to divide the support of X into K bins and estimate τ(x) using the average of τ_i within each bin.

The binscatter estimator for the CATE

With unknown τ_i, we apply the HT or HA estimator in each of the bins.

The binscatter estimator for the CATE

The binscatter estimator for the CATE

► Hainmueller, Mummolo, and Xu (2019) suggest that we use three bins.

- ▶ There are a lot of different choices (Cattaneo et al. 2019).
- Note that the estimator is clearly biased.

References I

Cattaneo, Matias D, Richard K Crump, Max H Farrell, and Yingjie Feng. 2019. "On Binscatter." arXiv Preprint arXiv:1902.09608.
Hainmueller, Jens, Jonathan Mummolo, and Yiqing Xu. 2019. "How Much Should We Trust Estimates from Multiplicative Interaction Models? Simple Tools to Improve Empirical Practice." Political Analysis 27 (2): 163–92.
Malesky, Edmund, Paul Schuler, and Anh Tran. 2012. "The Adverse Effects of Sunshine: A Field Experiment on Legislative Transparency in an Authoritarian Assembly." American Political Science Review 106 (4): 762–86.