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Review

I We learned the potential outcome framework last time.
I This framework enables us to define quantities with a causal

interpretation.
I Our estimands are usually averages of the individualistic

treatment effects on a fixed group.
I These estimands can be identified under certain assumptions.
I We can rely on the scientific solution or the statistical solution

to solve the fundamental problem of causal inference.
I The latter is more common in social science.
I It requires 1) a large sample, and 2) random assignment of the

treatment.
I Then, we will be able to construct estimators for the estimand.
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The Horvitz-Thomspon estimator
I Let’s consider a fixed sample with the Bernoulli trial pi = p.
I One estimator we often use to estimate the ATE is the

Horvitz-Thompson estimator:

τ̂HT = 1
N

N∑
i=1

DiYi
p − 1

N

N∑
i=1

(1− Di )Yi
1− p

I We can show that τ̂HT is unbiased and consistent for τSATE :

E
[
1
N

N∑
i=1

DiYi
p

]
= 1

N

N∑
i=1

E
[DiYi

p

]

= 1
N

N∑
i=1

1
p E [DiYi |Di = 1]P(Di = 1)

= 1
N

N∑
i=1

E [Yi (1)|Di = 1] = 1
N

N∑
i=1

Yi (1)
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Variance of the Horvitz-Thomspon estimator (*)

I Similarly, E
[

1
N
∑N

i=1
(1−Di )Yi

1−p

]
= 1

N
∑N

i=1 Yi (0).
I Hence, E [τ̂HT ] = τSATE .
I Note that we treat {Yi (0),Yi (1)}Ni=1 as fixed values in the

sample.
I Now, variance:

Var
[
1
N

N∑
i=1

DiYi
p

]
= 1

N2

N∑
i=1

Var
[DiYi

p

]

= 1
N2

N∑
i=1

1
p2 E [DiY 2

i ]− 1
N2

N∑
i=1

1
p2 E 2[DiYi ]

= 1
N2

N∑
i=1

Y 2
i (1)
p − 1

N2

N∑
i=1

Y 2
i (1)
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Variance of the Horvitz-Thomspon estimator (*)
I Similarly,

Var
[
1
N

N∑
i=1

(1− Di )Yi
1− p

]
= 1

N2

N∑
i=1

Y 2
i (0)
p − 1

N2

N∑
i=1

Y 2
i (0).

Cov
[
1
N

N∑
i=1

DiYi
p ,

1
N

N∑
i=1

(1− Di )Yi
1− p

]

= 1
N2

N∑
i=1

N∑
j=1

Cov
[DiYi

p ,
(1− Dj)Yj

1− p

]

= 1
N2

N∑
i=1

Cov
[DiYi

p ,
(1− Di )Yi

1− p

]

=− 1
N2

N∑
i=1

E
[DiYi

p

]
E
[(1− Di )Yi

1− p

]
= − 1

N2

N∑
i=1

Yi (1)Yi (0).
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Variance of the Horvitz-Thomspon estimator (*)
I Finally,

Var [τ̂HT ] = Var
[
1
N

N∑
i=1

DiYi
p

]
+ Var

[
1
N

N∑
i=1

(1− Di )Yi
1− p

]

− 2 ∗ Cov
[
1
N

N∑
i=1

DiYi
p ,

1
N

N∑
i=1

(1− Di )Yi
1− p

]

= 1
N2

N∑
i=1

Y 2
i (1)
p + 1

N2

N∑
i=1

Y 2
i (0)

1− p

− 1
N2

N∑
i=1

Y 2
i (1)− 1

N2

N∑
i=1

Y 2
i (0) + 2

N2

N∑
i=1

Yi (1)Yi (0)

= 1
N2

N∑
i=1

Y 2
i (1)
p + 1

N2

N∑
i=1

Y 2
i (0)

1− p −
1

N2

N∑
i=1

[Yi (1)− Yi (0)]2

≤ 1
N2

N∑
i=1

Y 2
i (1)
p + 1

N2

N∑
i=1

Y 2
i (0)

1− p .
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Variance estimation of the Horvitz-Thomspon estimator

I When N →∞, Var [τ̂HT ]→ 0.
I The Horvitz-Thomspon estimator is (root-N) consistent.
I We estimate the first two terms of the variance with their

sample analogues.
I The last term is essentially the variance of τi , which cannot be

estimated.
I What we can have is

V̂ar [τ̂HT ] = 1
Np

∑N
i=1 DiY 2

i
Np + 1

N(1− p)

∑N
i=1(1− Di )Y 2

i
N(1− p)

I We can show that E
[
V̂ar [τ̂HT ]

]
≥ Var [τ̂HT ].

I This is known as the Neyman variance estimator.
I The Neyman variance estimator is conservative unless the

treatment effects are constant.
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Asymptotics of the Horvitz-Thomspon estimator

I Li and Ding (2017) proved that
√

N(τ̂HT − τ) converges to a
normal distribution.

I The result is based on a theorem proved by Hoeffding, our
next-door neighbor.

I The asymptotic 95% confidence interval for τ̂HT is as follows:[
τ̂HT − 1.96 ∗

√
V̂ar [τ̂HT ], τ̂HT + 1.96 ∗

√
V̂ar [τ̂HT ]

]
.
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The Horvitz-Thompson estimator: simulation
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## The SATE is 2.916262
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The Horvitz-Thompson estimator: simulation
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## The average of variance estimates is 1.891

## The true variance is 1.958

## The coverage rate is 0.945
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The Hajek estimator

I The Hajek estimator for τ is

τ̂HA = 1
N1

N∑
i=1

DiYi −
1

N0

N∑
i=1

(1− Di )Yi .

I This estimator is biased: E
[

x
y

]
6= E [x ]

E [y ] .
I Yet it is root-N consistent and asymptotically normal for τ .
I We can derive its variance and statistical properties using the

Delta method (Taylor expansion).
I Let’s first consider the term 1

N1

∑N
i=1 DiYi =

∑N
i=1 Di Yi∑N

i=1 Di
.

I This is a ratio estimator.
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Variance of the Hajek estimator (*)
I In general, a ratio estimator has the form of x

y .
I We can derive the Taylor expansion of this function around the

values (E [x ],E [y ]):

x
y = E [x ]

E [y ] + 1
E [y ] (x − E [x ])− E [x ]

E 2[y ] (y − E [y ]) + R.

I This process is known as linearization.
I In the previous example, x = 1

Np
∑N

i=1 DiYi , y = 1
Np
∑N

i=1 Di ,
E [x ] = 1

N
∑N

i=1 Yi (1) = Ȳ (1), and E [y ] = 1.
I Suppose x → E [x ] and y → E [y ] when N →∞, then we can

see that x
y →

E [x ]
E [y ] .

I Hence, x
y is consistent for E [x ]

E [y ] .
I Similarly,

√
N x

y converges to a normal distribution if
√

Nx and√
Ny are asymptotically normal.
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Variance of the Hajek estimator (*)

I To derive the variance of x
y , note that

Var
[x

y

]
=E

[x
y −

E [x ]
E [y ]

]2

→ 1
E 2[y ]E [x − E [x ]]2 + E 2[x ]

E 4[y ]E [y − E [y ]]2

− 2E [x ]
E 3[y ] E [(x − E [x ])(y − E [y ])]

=E
[ 1

E [y ] (x − E [x ])− E [x ]
E 2[y ] (y − E [y ])

]2
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Variance of the Hajek estimator (*)

I Plugging into the expression above, we have

Var
[∑N

i=1 DiYi∑N
i=1 Di

]

→E
[
1
N

N∑
i=1

[DiYi
p − Yi (1)

]
− Ȳ (1)

[
1

Np

N∑
i=1

Di − 1
]]2

=E
[
1
N

N∑
i=1

Di
p
[
Yi − Ȳ (1)

]]2

= 1
N2

∑N
i=1[Yi (1)− Ȳ (1)]2

p − 1
N2

N∑
i=1

[Yi (1)− Ȳ (1)]2.
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Variance of the Hajek estimator

I We can do the calculation for all the three terms.
I The identifiable part in the variance equals

1
N2

∑N
i=1[Yi (1)− Ȳ (1)]2

p + 1
N2

∑N
i=1[Yi (0)− Ȳ (0)]2

1− p .

I The omitted part equals

− 1
N2

N∑
i=1

[Yi (1)− Yi (0)− (Ȳ (1)− Ȳ (0))]2.

I In complete randomization, the two estimators are equivalent
and the variance is the same as the one for the Hajek estimator.
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Variance of the Hajek estimator

I We can see that the first term in the variance equals

1
N2

∑N
i=1[Yi (1)− Ȳ (1)]2

p

= 1
N2

∑N
i=1 Y 2

i (1)
p − 1

N2

∑N
i=1 2Yi (1)Ȳ (1)

p + 1
N2

∑N
i=1[Ȳ (1)]2

p

= 1
N2

∑N
i=1 Y 2

i (1)
p − 1

N
[Ȳ (1)]2

p .

I The first part is the first term in the variance of the
Horvitz-Thompson estimator and the second part is negative.

I The Hajek estimator is always more efficient.
I This is because the Hajek estimator uses “stabilized weights.”
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Variance estimation of the Hajek estimator

I The Neyman variance estimator in this case is

V̂ar [τ̂HA] = S2
1

N1
+ S2

0
N0
, with

S2
1 =

∑N
i=1 Di (Yi − ̂̄Y (1))2

N1 − 1 and

S2
0 =

∑N
i=1(1− Di )(Yi − ̂̄Y (0))2

N0 − 1 .

I Here ̂̄Y (d) is an estimate of Ȳ (d), like ̂̄Y (1) = 1
N1

∑N
i=1 DiYi .

I S2
1 and S2

0 are the sampling variance of Yi in the treatment
group and the control group, respectively.
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The Hajek estimator: simulation
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## The average of variance estimates is 0.09

## The true variance is 0.059

## The coverage rate is 0.985
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Design-based uncertainty

I What does the variance tell us?
I If we repeat the assignment process and obtain a series of τ̂HT ,

how large will the variation be?
I The only source of randomness is treatment assignment, or the

value of Di .
I This is known as the design-based uncertainty.
I Conventionally, we believe the variance describes the

uncertainty caused by sampling error.
I If so, what does the standard error mean if our analysis is at

the population level (e.g., 50 states in the US)?
I We can think the collection of the same population under

different treatment assignments as the real population
(sometimes known as the super population).

I E.g., we draw a sample of 50 states from the super population
of 250 possibilities.
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Sampling-based uncertainty

I Suppose we are only interested in the average ideal point of
American people.

I We randomly draw a sample of 1,000 Americans and calculate
the mean of their ideal points.

I The calculated mean will differ from one sample to another.
I This is known as the sampling-based uncertainty.
I There is no design-based uncertainty if we are interested in

descriptive quantities.
I Both types of uncertainties may exist in practice.
I If the sample is representative, the unidentifiable part in the

variance will be exactly the sampling variance.
I The Neyman variance estimator is then consistent for the

combination of both types of uncertainties.
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Sampling-based vs. design-based uncertainty
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Sampling uncertainty vs. design uncertainty

## Total uncertainty = 0.163

## Design-based uncertainty = 0.133

## Sampling-based uncertainty = 0.03
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Justify the Neyman variance

I In finite sample, the Neyman variance is conservative for the
true variance of the SATE (design-based uncertainty).

I The reason is that we cannot estimate the part driven by
treatment effect heterogeneity.

I We can construct sharp bounds of it (Aronow et al. 2014;
Imbens and Menzel 2018).

I It is consistent when the effect is homogeneous.
I It is also consistent for the true variance of the PATE with

representative sampling (design-based uncertainty +
sampling-based uncertainty).
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