
Lecture I: Basic Concepts in Empirical Analysis

Ye Wang
University of North Carolina at Chapel Hill

Linear Methods in Causal Inference
POLI784

1 / 25



Linear estimators

I Suppose we have a sample of N units and observe the outcome
Yi , the treatment Di , and the covariates Xi .

I A linear estimator τ̂ takes the form

τ̂ =
N∑

i=1
w(Di ,Xi ) ∗ Yi .

I A linear combination of Yi .

2 / 25



Linear estimators

I For example, if Yi and Di are mean-zero and there are no
covariates, the regression coefficient equals

τ̂ =
∑N

i=1 DiYi∑N
i=1 D2

i

I Here w(Di ,Xi ) = Di∑N
i=1 D2

i
.

I It can be more complicated and covers most methods we have
for causal inference.

I Another example is the nearest-neighbor matching estimator:

τ̂ = 1
N1

∑
i :Di =1

(Yi − YNi ),

where YNi is i ’s nearest neighbor from the control group.

3 / 25



Estimator, estimate, and estimand

I An estimator is a mapping from you data to a number (or
several numbers).

I You can think it as an algorithm (e.g., sample average
τ̂ = 1

N
∑N

i=1 Yi .).
I Also known as a functional (a function of the distribution

function).
I The number we obtain is called an estimate.
I We hope the estimator has good properties: the estimate it

generates should be close to a theoretical quantity τ we care
about.

I Such a quantity is referred to as the estimand or the target
parameter.

I The estimand should be justified by our substantive arguments.
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Estimator, estimate, and estimand

I The estimand may depend on variables not in our data.
I Suppose we have missing data in the sample and observe

Yi = Y ∗i only when Si = 1.
I The estimand, population mean, depends on Y ∗i .
I But our estimator can only depend on Yi and Si .
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Identification

I If the estimate generated by the estimator equals the estimand
τ when N is infinite, we say τ can be identified.

I Identification means whether we can infer the value of the
target parameter at least in theory.

I In the previous example, it means we can find an estimator τ̂
such that E [Yi ] = E [τ̂ ].

I Whether this is possible depends on assumptions we have
imposed.
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Properties of an estimator

I If E [τ̂ ] = τ , we say the estimator is unbiased for τ .
I If there exists an unbiased estimator for τ , then τ can be

identified.
I If limN→∞ τ̂ = τ , we say the estimator is consistent.
I Consistency holds when the variance of the estimator declines

to zero:

P(|τ̂ − τ | > ε) ≤ Var(τ̂ − τ)
ε2 . (Markov’s inequality)

I It is essentially the proof of the law of large numbers.
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An example: sample average

I What are the properties of the sample average estimator?
I Suppose

1. Yi ∼ F (y), E [Yi ] = µ,
2. Var [Yi ] = σ2 <∞, and
3. data are i.i.d. (independent and identically distributed)

I Remember that σ2 = E [Y 2
i ]− µ2.

I It is unbiased: E [τ̂ ] = 1
N
∑N

i=1 E [Yi ] = 1
N
∑N

i=1 µ = µ.
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An example: sample average (*)

I The variance of the estimator is

Var [τ̂ ] = E [τ̂2]− (E [τ̂ ])2 = E

 1
N2

N∑
i=1

N∑
j=1

YiYj

− µ2

= 1
N2

N∑
i=1

E
[
Y 2

i

]
+ 1

N2

N∑
i=1

∑
j 6=i

E [YiYj ]− µ2

= 1
N2

N∑
i=1

(σ2 + µ2) + 1
N2

N∑
i=1

∑
j 6=i

µ2 − µ2

= 1
N2

N∑
i=1

σ2 = σ2

N → 0.

I It is thus consistent.
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Estimator, estimate, and estimand

I Consistency and unbiasedness do not imply each other.
I What estimator is consistent but biased?
I What estimator is unbiased yet inconsistent?
I Usually consistency is more important as we focus on large

samples in social science.
I Unbiasedness matters more if the sample size is smaller.
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From identification to estimation

I If an estimand can be identified, usually it can be estimated in
finite sample.

I A common principle is to rely on the sample analogue.
I We replace the expectation sign E [·] with sample average

1
N
∑N

i=1 ·.
I Identification is hard while estimation is easier.
I The estimate is the first number you are going to report in your

quantitative analysis.
I It is important to discuss the magnitude of the estimate!
I Sometimes this is referred to as the economic significance of

your estimate.
I It has welfare implications.
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From estimation to inference

I But we also want to let our readers know how confident we are
in the estimate.

I We want to construct confidence intervals for the estimate
(often 95%).

I This process is called statistical inference.
I We can replace confidence intervals with confidence sets when

the estimand is multi-dimensional.
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Statistical inference

I First, we want to derive the theoretical variance of τ̂ , Var(τ̂).
I If possible, we hope that Var(τ̂) is as small as possible

(efficiency).
I Var(τ̂) = E [τ̂ − τ ]2 when τ̂ is unbiased.
I We have seen that if Var(τ̂)→ 0 when N →∞, τ̂ is

consistent.
I It is often essential to know how fast Var(τ̂) declines to zero.
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Statistical inference

I For most estimators, N ∗ Var(τ̂) converges to a constant.
I Then, we have that

√
N(τ̂ − τ) converges to a fixed

distribution.
I We say τ̂ is root-N consistent.
I As we will see, most nonparametric estimators are not root-N

consistent.
I For example, if τ̂ is based on kernel regression, then

N2/5(τ̂ − τ) converges to a fixed distribution (under regularity
conditions).
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Statistical inference

I The variance’s value hinges on this unknown parameter τ .
I We also need to find an estimate for N ∗Var(τ̂), denoted as σ̂2.
I We call σ̂√

N the standard error of τ̂ .
I This becomes another estimation problem.
I We hope our variance estimate to be unbiased and consistent.
I At least, it should be conservative: σ̂2 ≥ N ∗ Var(τ̂) when

N →∞.
I This is usually the second number you report in your analysis.
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Statistical inference

I To construct confidence intervals, we need to know the
distribution of τ̂ , FN(τ̂) even when τ̂ is root-N consistent.

I When N is finite, it is often impossible to know the answer.
I But as N is sufficiently large, the distribution is often close to

the normal distribution: N (τ,N ∗ Var(τ̂)).
I This is justified by the central limit theorem (CLT):

√
N(τ̂ − τ)→ N (0,N ∗ Var(τ̂)).

I Remember that our estimators have the linear form, hence they
often converge to normality.
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Statistical inference

I Another approach is to approximate FN(τ̂) with resampling
techiniques.

I Common choices: jackknife and bootstrap.
I If we can approximate F (τ̂), we can construct the confidence

intervals as

Ĉ =
[
τ̂ − z1−α/2

σ̂√
N
, τ̂ + z1−α/2

σ̂√
N

]
I What is the interpretation of the confidence interval?
I Remember that Ĉ is an approximation!
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Statistical inference

I Confidence intervals are closely connected with hypothesis
testing.

I Under the null hypothesis H0 : τ = 0, we know that

τ̂√
Var(τ̂)

→ N (0, 1)

I α is called the level of the test.
I A critical property of the confidence interval is the coverage

rate, defined as
P(τ ∈ Ĉ).

I We hope the coverage rate is at least (1− α)% when N →∞:

lim
N→∞

P(τ ∈ Ĉ) ≥ (1− α).
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An example: sample average (continued)

I We can prove that the sample average is efficient.
I We can estimate its variance via either 1

N
∑N

i=1(Yi − Ȳ )2 or
1

N−1
∑N

i=1(Yi − Ȳ )2.
I Both variance estimators are consistent but only the latter is

unbiased.
I We can show that

√
N(τ̂ − τ)→ N (τ, σ2) using the CLT.

I The 95% confidence interval of τ̂ can be conducted using
critical values from the normal distribution.
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Monte Carlo experiment

I With real data, we never know what the true DGP or the
estimand is.

I But we can specify them in simulation, or Monte Carlo
experiments.

I It is thus important to examine the performance of any method
via simulation.

I We generate the data from a distribution that satisfies the
requirement of the method.

I We apply the method to the data, obtaining all the quantities
we need (the estimate, the variance estimate, the confidence
interval, etc.).

I Remember that we can do this repeatedly and allow N to
increase.
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Monte Carlo experiment: sample average
N <- 100
Nboots <- 1000
ests <- matrix(NA, Nboots, 3)
covered <- rep(NA, Nboots)
for (b in 1:Nboots){

Y <- runif(N) # population mean: 0.5
# true variance is 1/12 = 0.0833
Y_bar <- mean(Y)
Y_var1 <- var(Y)
Y_var2 <- var(Y) * (N / (N - 1))
ests[b, 1] <- Y_bar
ests[b, 2] <- Y_var1
ests[b, 3] <- Y_var2
CI <- c(Y_bar - 1.96 * sqrt(Y_var1 / N),

Y_bar + 1.96 * sqrt(Y_var1 / N))
covered[b] <- CI[1] <= 0.5 & CI[2] >= 0.5

}
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Monte Carlo experiment: sample average
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Monte Carlo experiment: sample average
mean(ests[, 1]) - 0.5 # bias

## [1] 0.0008474082

N*var(ests[, 1]) # true variance (simulated)

## [1] 0.0752958

mean(ests[, 2]) # avg. of estimated variance

## [1] 0.08375943

mean(ests[, 3]) # avg. of estimated variance

## [1] 0.08460549

mean(covered) # coverage rate

## [1] 0.953
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Summary

I In social science research, we try to estimate a parameter or
test a relationship.

I For this purposes, we collect a dataset and apply a method.
I The method should provide you with an estimate, a variance

estimate, and confidence intervals at desirable levels.
I Therefore, to understand each method, we need to discuss

under what circumstances its outputs are what we want.
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