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Review

I Assumptions underlying the instrumental variable method are
hard to satisfy in observational studies.

I If an instrument is weak, then the finite-sample bias of the
estimate will be large and the confidence interval will not have
the correct coverage rate.

I We can use the Anderson-Rubin test or adjust the critical value
of the t-statistic based on the value of the first-stage F-statistic.

I We can test exclusion restriction and monotonicity jointly.
I Under model-specification assumptions, we can charaterize the

compliers and generalize the LATE to the ATE.
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Some history

I Regression discontinuity design (RDD) became popular in
political science since Lee (2008) applied this method to
analyze congressional elections in the US.

I Thistlethwaite and Campbell (1960) first developed this idea in
psychology.

I Hahn, Todd, and Van der Klaauw (2001) formally discussed
the identification assumptions in RDD.

I Porter (2003) proposed the kernel regression estimator based
on the work by Fan and Gijbels (1996).

I Imbens and Kalyanaraman (2012) introduced the first
data-driven bandwidth selector.

I Calonico, Cattaneo, and Titiunik (2014) derived the asymptotic
distributions for a group of RDD estimators.
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Setup

I We possess a dataset with N units.
I We observe (Yi ,Di ,Zi) for each unit i ∈ {1, 2, . . . ,N}.
I Zi is called the running variable, which decides the value of the

binary treatment Di .
I We denote Zi ’s density function as f (z).
I There exists a cutoff c (often set to be 0) such that

Di = 1{Zi ≥ c}.
I This setup is known as the sharp RDD.
I The causal parameter of interest, τSRD, is defined as

E [Yi(1)− Yi(0)|Zi = c].

I Notice that the causal parameter is conditional/local by
definition.

I It only captures the effect on those with Zi = c.
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Ideal experiment behind sharp RDD

I This setup is slightly different from what we saw before.
I Positivity is violated everywhere but at the cutoff point.
I We can treat RDD as a randomized experiment conducted in

the block defined by Zi = c.
I Suppose there are 1, 000 congressional elections, in all of which

both candidates win 50% of the votes.
I We then randomly select a winner for each election with a coin

flip, which implies that Di ⊥ {Yi(1),Yi(0)}|Zi = c.
I In theory, all we need to do is to calculate the difference in

means.
I The result reflects the causal effect of the winner’s attributes

(e.g., party affiliation).
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Ideal experiment behind sharp RDD

I Unfortunately, we do not have that many elections with a
50-50 split in practice.

I We need structural restrictions on the outcome such that we
can approximate the two average outcomes using data beyond
the cutoff point.

I The RDD estimate is thus biased by default.
I Yet the bias diminishes to zero as the sample size increases, as

we can use more observations that are close to the cutoff.
I Then, the estimate converges to the unbiased one under the

ideal experiment.
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Identification in sharp RDD

I Identification in the setting of sharp RDD requires the
continuity of the expected outcome (Hahn, Todd, and Van der
Klaauw 2001).

I Define µ(z) = E [Yi |Zi = z ], µ+ = limz→c+ µ(z), and
µ− = limz→c− µ(z).

I Continuity means that µ+ = E [Yi(1)|Zi = c] and
µ− = E [Yi(0)|Zi = c].

I If so, we have
τSRD = µ+ − µ−.

I All we need to do is to estimate µ+ and µ−.
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Estimation in sharp RDD

I To estimate µ+ and µ−, the most common choice is the kernel
regression estimator.

I Given a selected bandwidth h, we can fit the model within the
windows [c − h, c] and [c, c + h], respectively:

(µ̂+, β̂+)

= argmin
µ,β

N∑
i=1

1{Zi ≥ c} (Yi − µ− β(Zi − c))2 K
(Zi − c

h

)

I (µ̂−, β̂−) are similarly estimated.
I Then,

τ̂SRD = µ̂+ − µ̂−.
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Estimation in sharp RDD
I Remember that to improve the precision of prediction, units

that are closer to the cutoff should receive a larger weight.
I We usually use the triangular kernel in practice.
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Sharp RDD: application

I We will use Meyersson (2014) as an illustrative example.
I The author investigated the consequences of the 1994

municipal elections in Turkey.
I Does the victory of Islamic candidates endanger the rights of

women?
I In the raw data, we can find a negative correlation between the

vote share of Islamic candidates and high school attainment of
women across Turkish cities.

I But results from RDD tell a different story.
I The victory of Islamic mayors actually empowered “the poor

and pious” and encouraged women to receive more education.
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Sharp RDD: application
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Sharp RDD: application
## Sharp RD estimates using local polynomial regression.
##
## Number of Obs. 2630
## BW type mserd
## Kernel Triangular
## VCE method NN
##
## Number of Obs. 2315 315
## Eff. Number of Obs. 529 266
## Order est. (p) 1 1
## Order bias (q) 2 2
## BW est. (h) 0.172 0.172
## BW bias (b) 0.286 0.286
## rho (h/b) 0.603 0.603
## Unique Obs. 2313 315
##
## =============================================================================
## Method Coef. Std. Err. z P>|z| [ 95% C.I. ]
## =============================================================================
## Conventional 0.030 0.014 2.116 0.034 [0.002 , 0.058]
## Robust - - 1.776 0.076 [-0.003 , 0.063]
## =============================================================================
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Implement RDD in practice

I It is always critical to draw plots in RDD.
I The result would not be convincing if we cannot see the jump

of the outcome variable from the plot.
I Note that the plot is based on global polynomials rather than

kernel regressions.
I It does not include all the data points.
I Never use global polynomials to estimate the two intercepts

(Gelman and Imbens 2019).
I We are interested in local quantities rather than global fitness.
I Estimates of the intercepts may be driven by points that are far

away from the cutoff if you use global polynomials.
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Implement RDD in practice

I In practice, some scholars select the bandwidth using rdrobust
and then manually fit two regressions within the selected
window.

I What is the problem of this approach?
I It is inconsistent with the bandwidth selector and often leads to

larger biases.
I Bias correction is ignored and inference may be problematic.
I One may add higher order terms of (Zi − c) into the

regressions.
I But for sharp RDD, linear regression has the optimal rate of

convergence due to its nice performance on the boundary
(Porter 2003).
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Test the assumption of continuity

I As continuity is crucial for identification in sharp RDD, we
should test its validity in practice.

I A common approach is to rely on placebo tests.
I Several ways to do this:

I Apply the estimator to a covariate;
I Apply the estimator to a placebo outcome;
I Apply the estimator at a point other than the cutoff (placebo

treatment).
I Meyersson (2014) did a really good job.

15 / 35



Tests in sharp RDD: application
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Tests in sharp RDD: application
## CI Lower CI Upper
## Conventional -0.01464976 0.04035605
## Bias-Corrected -0.01486825 0.04013756
## Robust -0.02051897 0.04578828

## CI Lower CI Upper
## Conventional -0.02616607 0.03410509
## Bias-Corrected -0.02929148 0.03097967
## Robust -0.03526899 0.03695719

## CI Lower CI Upper
## Conventional -0.02713105 0.02631536
## Bias-Corrected -0.02997479 0.02347162
## Robust -0.03497856 0.02847539

## CI Lower CI Upper
## Conventional -0.01436241 0.03079918
## Bias-Corrected -0.01068460 0.03447699
## Robust -0.01436412 0.03815651
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Test the assumption of continuity
I The assumption is also violated when units in the sample

self-select into one side of the cutoff (known as sorting).
I For example, students may cheat to meet the requirement of a

scholarship.
I As a result, the density function f (z) will not change smoothly

across the cutoff.
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Test the assumption of continuity

I McCrary (2008) develop the first formal test of the
discontinuity in density.

I Essentially, we are testing whether

θ = ln lim
z→0+

f (z)− ln lim
z→0−

f (z)

deviates significantly from 0.
I Similarly, we estimate the two boundary points of ln f (z) using

local regression (Yi is not needed).
I Cattaneo, Jansson, and Ma (2020) provide an augmented

algorithm for non-parametric density estimation.
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Tests in sharp RDD: application
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Bias in RDD estimation (*)

I Let’s introduce some notations for deriving the bias of the
kernel regression estimator.

I Denote (Y1,Y2, . . . ,YN)′ as Y, (Z1,Z2, . . . ,ZN)′ as Z, and

R = (ι,Z)

W+ =
{

1{Zi ≥ c}K
(Zi − c

hN

)}
N×N

M = (µ(Z1), µ(Z2), . . . , µ(ZN))′

where ι is a vector with N 1s and W is a diagonal matrix of
weights.

I We use µ(k)
+ to denote the k-th order derivative of µ+ (similar

for µ−) and σ2(z) to denote Var [Yi |Zi = z ].
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Bias in RDD estimation (*)
I Notice that Y = M + ε with E [εi |Zi ] = 0.
I The estimate µ̂+ equals to the first row of

(R′W+R)−1(R′W+Y)
=(R′W+R)−1(R′W+M) + (R′W+R)−1(R′W+ε)

I Expectation of the second term is zero and we have the Taylor
expansion for µ(Zi):

µ(Zi) = µ+(0) + µ
(1)
+ (0)Zi +

µ
(2)
+ (0)
2 Z 2

i + νi

I Hence,

M = R
(
µ+(0)
µ

(1)
+ (0)

)
+ S2

µ
(2)
+ (0)
2 + ν

where S2 = (Z 2
1 ,Z 2

2 , . . . ,Z 2
N) and ν = (ν1, ν2, . . . , νN).
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Bias in RDD estimation (*)

I Now, the estimation bias of µ̂+, E [µ̂+]− µ+, is the first row of

(R′W+R)−1

R′W+S2
µ

(2)
+ (0)
2

+ (R′W+R)−1 (R′W+ν
)

I The convergence rates of these two terms rely on the
properties of the kernel.

I Via some cumbersome calculation, we can see that

E [µ̂+]− µ+ = C1µ
(2)
+ (0)h2 + op(h2)
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Bias in RDD estimation (*)

I We can similarly derive the variance of µ̂+ using the properties
of regression:

Var [µ̂+] = C2
Nh

σ2
+(0)

f+(0) + op

( 1
Nh

)
I Obviously, the bias and the variance of µ̂− have similar forms.
I More generally, we can estimate the k-th order derivative of µ+

and µ− with a p-th order local regression.
I The bias will have an order of p + 1.
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Bandwidth selection in RDD

I Before Imbens and Kalyanaraman (2012), the practice is to
minimize the regression’s MSE on the entire support of Z using
cross-validation.

I Imbens and Kalyanaraman (2012) argue that we should select a
bandwidth to minimize the MSE of the estimator:

MSE (h) =E [τ̂SRD − τSRD|Z]2

= (E [τ̂SRD|Z]− τSRD)2 + Var [τ̂SRD|Z]
=Bias2 + Variance.
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Bandwidth selection for optimizing MSE

I Imbens and Kalyanaraman (2012) show that in practice we can
minimize the asymptotic MSE:

AMSE (h) =C1h4
(
µ

(2)
+ (0)− µ(2)

− (0)
)2

+ C2
Nh

σ2(0)
f (0)

I From the expression we can solve the optimal bandwidth:

h∗N = C

 σ2(0)
f (0)(

µ
(2)
+ (0)− µ(2)

− (0)
)2


1
5

N−
1
5 .

I In practice, we can estimate h∗N with a plug-in estimator.
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Bias correction

I Imbens and Kalyanaraman (2012) do not prove the asymptotic
normality of the RDD estimate.

I Calonico, Cattaneo, and Titiunik (2014) study the asymptotic
distribution of the studentized RDD estimate:

τ̂SRD − τSRD√
Var [τ̂SRD]

.

I They show that the bandwidth selected via the previous
algorithm is too wide to guarantee the the asymptotic
normality of the estimate.

I We need h = op
(
N− 1

5
)
while the algorithm leads to

h∗N = Op
(
N− 1

5
)
.

I Consequently, the studentized estimate will be asymptotically
biased.
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Bias correction

I Intuitively,

τ̂SRD − τSRD√
Var [τ̂SRD]

= τ̂SRD − E [τ̂SRD]√
Var [τ̂SRD]

+ E [τ̂SRD]− τSRD√
Var [τ̂SRD]

.

I The first term is a weighted average of residuals and converges
to N(0, 1) by CLT.

I We need to guarantee that the second term is sufficiently small.
I Remember that the numerator is Op(h2) and the denominator

is Op
(

1√
Nh

)
, thus the total bias is Op(

√
Nh5) and does not

decline to zero.
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Bias correction

I Calonico, Cattaneo, and Titiunik (2014) provide a
bias-correction estimator τ̂bc

SRD.
I Intuitively, we use another local regression estimator with

bandwidth bN to estimate the second-order derivative of µ+
and µ− and subtract them from µ̂+ and µ̂−.

I Bias correction introduces extra uncertainty (from the extra
local regression) into the estimate, hence the variance has to
be adjusted accordingly.

I The bias-corrected CI does not account for this extra
uncertainty.

I They propose two variance estimators, one based on regression
analysis and the other based on the idea of nearest
neighborhood matching (Abadie and Imbens 2006).
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Bias correction

I Calonico, Cattaneo, and Titiunik (2014) prove that

τ̂bc
SRD − τSRD√

Var [τ̂bc
SRD]

→ N(0, 1)

as long as N min{b5, h5}max{b2, h2} → 0.
I In other words, we can still use the algorithm in Imbens and

Kalyanaraman (2012) to select the bandwidth.
I We just need to modify the obtained estimate to ensure

asymptotic normality.
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Bandwidth selection for the bias-correction estimator

I Notice that now we need two bandwidths, h and b.
I In practice, we start from two pilot bandwidths h0 and b0

selected by some rule of thumb.
I We use h0 and b0 to run the bias-correction estimator for the

second-order derivatives and obtain b∗ using the algorithm in
Imbens and Kalyanaraman (2012).

I We then use h0 and b∗ to run the bias-correction estimator for
the two intercepts and obtain h.
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Covariates in RDD

I In theory, there should be no confounder in RDD as it
approximates a simple experiment.

I But we can use the information contained in covariates to
enhance the estimator’s efficiency.

I Calonico et al. (2019) discuss how to include covariates in the
estimation.

I The basic idea is just the FWL theorem for regression.
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