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Review

Assumptions underlying the instrumental variable method are
hard to satisfy in observational studies.

If an instrument is weak, then the finite-sample bias of the
estimate will be large and the confidence interval will not have
the correct coverage rate.

We can use the Anderson-Rubin test or adjust the critical value

of the t-statistic based on the value of the first-stage F-statistic.

We can test exclusion restriction and monotonicity jointly.

» Under model-specification assumptions, we can charaterize the

compliers and generalize the LATE to the ATE.

N

35



Some history

Regression discontinuity design (RDD) became popular in
political science since Lee (2008) applied this method to
analyze congressional elections in the US.

Thistlethwaite and Campbell (1960) first developed this idea in
psychology.

Hahn, Todd, and Van der Klaauw (2001) formally discussed
the identification assumptions in RDD.

Porter (2003) proposed the kernel regression estimator based
on the work by Fan and Gijbels (1996).

Imbens and Kalyanaraman (2012) introduced the first
data-driven bandwidth selector.

Calonico, Cattaneo, and Titiunik (2014) derived the asymptotic
distributions for a group of RDD estimators.
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Setup

» We possess a dataset with N units.
» We observe (Y;, D;, Z;) for each unit i € {1,2,..., N}.

Z; is called the running variable, which decides the value of the
binary treatment D;.

We denote Z;'s density function as f(z).

There exists a cutoff ¢ (often set to be 0) such that

D,‘ = l{Z, > C}.

This setup is known as the sharp RDD.

The causal parameter of interest, Tsgp, is defined as

ETYi(1) = Yi(0)|Z; = c].

Notice that the causal parameter is conditional/local by
definition.
It only captures the effect on those with Z; = c.
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|deal experiment behind sharp RDD

This setup is slightly different from what we saw before.
Positivity is violated everywhere but at the cutoff point.

We can treat RDD as a randomized experiment conducted in
the block defined by Z; = c.

Suppose there are 1,000 congressional elections, in all of which
both candidates win 50% of the votes.

We then randomly select a winner for each election with a coin
flip, which implies that D; L {Y;i(1), Yi(0)}|Zi = c.

In theory, all we need to do is to calculate the difference in
means.

The result reflects the causal effect of the winner's attributes
(e.g., party affiliation).
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|deal experiment behind sharp RDD

» Unfortunately, we do not have that many elections with a
50-50 split in practice.

» We need structural restrictions on the outcome such that we
can approximate the two average outcomes using data beyond
the cutoff point.

» The RDD estimate is thus biased by default.

> Yet the bias diminishes to zero as the sample size increases, as
we can use more observations that are close to the cutoff.

> Then, the estimate converges to the unbiased one under the
ideal experiment.
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|dentification in sharp RDD

» Identification in the setting of sharp RDD requires the
continuity of the expected outcome (Hahn, Todd, and Van der
Klaauw 2001).

» Define u(z) = E[Yi|Z; = z], p+ = lim,_+ u(z), and
p— = lim,_, - M(Z)

» Continuity means that u = E[Y;(1)|Z; = c] and
i = E[Y(0)Z = c].

» If so, we have

TSRD = M+ — H—.

> All we need to do is to estimate p4 and p—.
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Estimation in sharp RDD

» To estimate p4 and p_, the most common choice is the kernel
regression estimator.

> Given a selected bandwidth h, we can fit the model within the
windows [c — h, c] and [c, ¢ + h], respectively:

(s Bt)
N

=argmind_1{Z > c} (Vi —p— B(Z — ¢))*K (z,- - c)

P i1 h

» (fi_, 3_) are similarly estimated.
» Then,

TSRD = [l — fi—.



Estimation in sharp RDD

» Remember that to improve the precision of prediction, units
that are closer to the cutoff should receive a larger weight.
> We usually use the triangular kernel in practice.
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Sharp RDD: application

» We will use Meyersson (2014) as an illustrative example.

» The author investigated the consequences of the 1994
municipal elections in Turkey.

» Does the victory of Islamic candidates endanger the rights of
women?

> In the raw data, we can find a negative correlation between the
vote share of Islamic candidates and high school attainment of
women across Turkish cities.

» But results from RDD tell a different story.

» The victory of Islamic mayors actually empowered “the poor
and pious” and encouraged women to receive more education.
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Sharp RDD: application

##
##
##
##
##
##
##
#it
##
##
##
##
##
##
##
##
##
##

Sharp RD estimates using local polynomial regression.

Number of Obs. 2630
BW type mserd
Kernel Triangular
VCE method NN
Number of Obs. 2315 315
Eff. Number of Obs. 529 266
Order est. (p) 1 1
Order bias (q) 2 2
BW est. (h) 0.172 0.172
BW bias (b) 0.286 0.286
rho (h/b) 0.603 0.603
Unique Obs. 2313 315
Method Coef. Std. Err. z P>zl



Implement RDD in practice

» It is always critical to draw plots in RDD.

» The result would not be convincing if we cannot see the jump
of the outcome variable from the plot.

» Note that the plot is based on global polynomials rather than
kernel regressions.

» It does not include all the data points.

» Never use global polynomials to estimate the two intercepts
(Gelman and Imbens 2019).

» We are interested in local quantities rather than global fitness.

» Estimates of the intercepts may be driven by points that are far
away from the cutoff if you use global polynomials.
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Implement RDD in practice

> In practice, some scholars select the bandwidth using rdrobust
and then manually fit two regressions within the selected
window.

» What is the problem of this approach?

» It is inconsistent with the bandwidth selector and often leads to
larger biases.

» Bias correction is ignored and inference may be problematic.

» One may add higher order terms of (Z; — c) into the
regressions.

» But for sharp RDD, linear regression has the optimal rate of
convergence due to its nice performance on the boundary
(Porter 2003).
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Test the assumption of continuity

v

As continuity is crucial for identification in sharp RDD, we
should test its validity in practice.
A common approach is to rely on placebo tests.

Several ways to do this:
» Apply the estimator to a covariate;
> Apply the estimator to a placebo outcome;
» Apply the estimator at a point other than the cutoff (placebo
treatment).

Meyersson (2014) did a really good job.

v

v
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Tests in sharp RDD: application
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Tests in sharp RDD: application

##
##
##
##

##
##
##
##

##
##
##
##

##
##
##
##

Conventional -0.
Bias-Corrected -0.
Robust -0.
Conventional -0.
Bias-Corrected -0.
Robust -0.
Conventional -0.
Bias-Corrected -0.
Robust -0.
Conventional -0.
Bias-Corrected -0.

Robust -0.

CI Lower
01464976
01486825
02051897

CI Lower
02616607
02929148
03526899

CI Lower
02713105
02997479
03497856

CI Lower
01436241
01068460
01436412

CI Upper

.04035605
.04013756
.04578828

CI Upper

.03410509
.03097967
.03695719

CI Upper

.02631536
.02347162
.02847539

CI Upper

.03079918
.03447699
.03815651
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Test the assumption of continuity

» The assumption is also violated when units in the sample
self-select into one side of the cutoff (known as sorting).

» For example, students may cheat to meet the requirement of a
scholarship.

> As a result, the density function f(z) will not change smoothly
across the cutoff.
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Test the assumption of continuity

» McCrary (2008) develop the first formal test of the
discontinuity in density.
> Essentially, we are testing whether

0= InZILrQ+ f(z) Inzlng_ f(z)
deviates significantly from 0.
» Similarly, we estimate the two boundary points of In f(z) using
local regression (Y; is not needed).
» Cattaneo, Jansson, and Ma (2020) provide an augmented
algorithm for non-parametric density estimation.
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Tests in sharp RDD: application
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Bias in RDD estimation (*)

» Let's introduce some notations for deriving the bias of the
kernel regression estimator.
» Denote (Y1, Ya,...,Yn) as Y, (Z1,22,...,2Zy) as Z, and

R=(,2)

.= {uaz e (45) |
NxN

M = (u(Z1), i(Z2), - - .. 1i(Zn))’

where ¢ is a vector with N 1s and W is a diagonal matrix of
weights.
» We use uﬂ() to denote the k-th order derivative of i (similar

for ;1) and 0?(z) to denote Var[Y;|Z; = z].

21/35



Bias in RDD estimation (*)

» Notice that Y = M + ¢ with E[¢;|Z] = 0.
» The estimate /i equals to the first row of

(RW,R)}(RW_Y)
=(R'W,R)(RW M) + (RW,R) " }(R'W_¢)

» Expectation of the second term is zero and we have the Taylor
expansion for u(Z;):

(2)

0
w(Zi) = p(0) + 1P(0)Z; + “*2()2,2 +
» Hence, o
11+(0) 12(0)

where Sy = (Z2,73,...,Z3) and v = (v1,v2, ..., Un).



Bias in RDD estimation (*)

» Now, the estimation bias of jiy, E[fi4+] — py, is the first row of

)

(RW_R)! (R’w+52“+2(0)) + (RW4R)™ (R'W, 1)

» The convergence rates of these two terms rely on the

properties of the kernel.
» Via some cumbersome calculation, we can see that

E[py] = py = Cul? (0)1% + 0p(h?)
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Bias in RDD estimation (*)

» We can similarly derive the variance of [i4 using the properties

of regression:

C2 0'2 (0) 1
Var[f] = —= -+ il
arlie] = N Fooy T <Nh>

» Obviously, the bias and the variance of ji_ have similar forms.
» More generally, we can estimate the k-th order derivative of 4

and p— with a p-th order local regression.
» The bias will have an order of p + 1.
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Bandwidth selection in RDD

» Before Imbens and Kalyanaraman (2012), the practice is to
minimize the regression's MSE on the entire support of Z using
cross-validation.

» Imbens and Kalyanaraman (2012) argue that we should select a
bandwidth to minimize the MSE of the estimator:

MSE(h) =E [#srp — Tsrp|Z]?

= (E [*srp|Z] — Tsrp)? + Var [#srp|Z]

=Bias® + Variance.
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Bandwidth selection for optimizing MSE

» Imbens and Kalyanaraman (2012) show that in practice we can
minimize the asymptotic MSE:

G 0%(0)

Nh £(0)

AMSE (h) =Cih* (u(0) - Mg)(o)f N

» From the expression we can solve the optimal bandwidth:

a2(0) 5
7(0)

(120 - )"

> In practice, we can estimate hy, with a plug-in estimator.

>
=%
|
SIE

N~5s.
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Bias correction

» Imbens and Kalyanaraman (2012) do not prove the asymptotic
normality of the RDD estimate.

» Calonico, Cattaneo, and Titiunik (2014) study the asymptotic
distribution of the studentized RDD estimate:

TSRD — TSRD
\/ Var[?SRD]

» They show that the bandwidth selected via the previous
algorithm is too wide to guarantee the the asymptotic
normality of the estimate.

» We need h = o, (Nf%) while the algorithm leads to

1
v = 0p (N*%).

» Consequently, the studentized estimate will be asymptotically

biased.
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Bias correction

> Intuitively,

*srp — Tsrp _ Tsrp — E[fsrp] | E[fsrp] — Tsrp

JVarlrsro]  /Var[fsrol v/ Var[#sro]

» The first term is a weighted average of residuals and converges
to N(0,1) by CLT.

> We need to guarantee that the second term is sufficiently small.

» Remember that the numerator is Op(h?) and the denominator

is Op (F) thus the total bias is Op(Vv Nh®) and does not
decline to zero.
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Bias correction

» Calonico, Cattaneo, and Titiunik (2014) provide a
bias-correction estimator %é’,‘{,D.

> Intuitively, we use another local regression estimator with
bandwidth by to estimate the second-order derivative of 14
and p— and subtract them from [iy and fi_.

» Bias correction introduces extra uncertainty (from the extra
local regression) into the estimate, hence the variance has to
be adjusted accordingly.

» The bias-corrected Cl does not account for this extra
uncertainty.

» They propose two variance estimators, one based on regression
analysis and the other based on the idea of nearest
neighborhood matching (Abadie and Imbens 2006).
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Bias correction

» Calonico, Cattaneo, and Titiunik (2014) prove that

TSkp — TsrD — N(0,1)
Var [%gfc?o]

as long as N min{b%, h%} max{b?, h*} — 0.

> In other words, we can still use the algorithm in Imbens and
Kalyanaraman (2012) to select the bandwidth.

» We just need to modify the obtained estimate to ensure
asymptotic normality.
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Bandwidth selection for the bias-correction estimator

» Notice that now we need two bandwidths, h and b.

» In practice, we start from two pilot bandwidths hg and bg
selected by some rule of thumb.

» We use hg and bg to run the bias-correction estimator for the
second-order derivatives and obtain b* using the algorithm in
Imbens and Kalyanaraman (2012).

» We then use hyg and b* to run the bias-correction estimator for
the two intercepts and obtain h.
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Covariates in RDD

> In theory, there should be no confounder in RDD as it
approximates a simple experiment.

» But we can use the information contained in covariates to
enhance the estimator's efficiency.

» Calonico et al. (2019) discuss how to include covariates in the
estimation.

» The basic idea is just the FWL theorem for regression.

32/35



References |

Abadie, Alberto, and Guido W Imbens. 2006. “Large Sample
Properties of Matching Estimators for Average Treatment
Effects.” Econometrica 74 (1): 235-67.

Calonico, Sebastian, Matias D Cattaneo, Max H Farrell, and Rocio
Titiunik. 2019. “Regression Discontinuity Designs Using
Covariates.” Review of Economics and Statistics 101 (3):
442-51.

Calonico, Sebastian, Matias D Cattaneo, and Rocio Titiunik. 2014.
“Robust Nonparametric Confidence Intervals for
Regression-Discontinuity Designs.” Econometrica 82 (6):
2295-2326.

Cattaneo, Matias D, Michael Jansson, and Xinwei Ma. 2020.
“Simple Local Polynomial Density Estimators.” Journal of the
American Statistical Association 115 (531): 1449-55.

Fan, Jianging, and lrene Gijbels. 1996. Local Polynomial Modelling
and Its Applications: Monographs on Statistics and Applied
Probability 66. Vol. 66. CRC Press.

33/35



References |l

Gelman, Andrew, and Guido Imbens. 2019. “Why High-Order
Polynomials Should Not Be Used in Regression Discontinuity
Designs.” Journal of Business & Economic Statistics 37 (3):
447-56.

Hahn, Jinyong, Petra Todd, and Wilbert Van der Klaauw. 2001.
“Identification and Estimation of Treatment Effects with a

Regression-Discontinuity Design." Econometrica 69 (1): 201-9.

Imbens, Guido, and Karthik Kalyanaraman. 2012. “Optimal
Bandwidth Choice for the Regression Discontinuity Estimator.”
The Review of Economic Studies 79 (3): 933-59.

Lee, David S. 2008. “Randomized Experiments from Non-Random
Selection in US House Elections.” Journal of Econometrics 142
(2): 675-97.

McCrary, Justin. 2008. “Manipulation of the Running Variable in
the Regression Discontinuity Design: A Density Test.” Journal
of Econometrics 142 (2): 698-714.

34 /35



References Il|

Meyersson, Erik. 2014. “Islamic Rule and the Empowerment of the
Poor and Pious.” Econometrica 82 (1): 229-69.

Porter, Jack. 2003. “Estimation in the Regression Discontinuity
Model.” Unpublished Manuscript, Department of Economics,
University of Wisconsin at Madison 2003: 5-19.

Thistlethwaite, Donald L, and Donald T Campbell. 1960.
“Regression-Discontinuity Analysis: An Alternative to the Ex
Post Facto Experiment.” Journal of Educational Psychology 51
(6): 3009.

35/35



