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Review

I We discussed the difference between experiments and
observational studies.

I Both require (conditional) randomization of the treatment for
causal identification.

I The difference is the we do not know the probability of being
treated in the latter.

I We have to estimate nuisance parameters under imposed
structural restrictions.

I We can estimate either propensity scores or response surfaces.
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Blocking

I Suppose our data are generated by block randomization.
I We know covariates that are used to form blocks but not the

probability of being treated within each block.
I It is a natural idea to recover the blocks first—units with the

same covariates values will be allocated into the same group.
I Next, we estimate the CATE in each group and aggregate them

to estimate the SATE.
I This method is known as blocking in the literature.
I It does not work when there are many confounders or some

confounders are continuous.
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Matching
I Instead, we can create a block for each unit using similar units

(just like kernel regression).
I For any treated (untreated) unit i , we find M units from the

control (treatment) group that are similar to it in covariates
(nearest-neighbor matching or NN matching).

I Or, we find M units from the control (treatment) group that
are similar to it in the propensity score (propensity score
matching or PS matching).

I We need to decide the number of neighbors (M) and whether
replacement is allowed.

I If not, each unit from the control (treatment) group can only
be matched to one treated (untreated) unit.

I Not all the units from the control (treatment) group will be
matched to a treated (untreated) unit.

I The existence of such units usually suggests the violation of
positivity.
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Matching

I We also need a distance metric to measure how similar two
units are.

I A natural choice is the Euclidean distance; but it is sensitive to
the units of the variables.

I An alternative is the Mahalanobis distance:

d(Xi ,Xj) =
√

(Xi − X̄)′S−1(Xj − X̄),

where S is a positive-definite matrix such as the
variance-covariance matrix of the variables.

I This metric standardizes all the variables such that units no
longer matter.
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Matching

I The basic steps are as follows
1. Decide your estimand (ATE or ATT),
2. Choose the matching method (what covariates to be matched

on, NN or PS matching, number of neighbors, with or without
replacement, etc.),

3. Choose a proper distance metric,
4. Find matches on your set of covariates/propensity scores, and

get rid of non-matches,
5. Check balance in your matched data set,
6. Repeat these steps until your set exhibits acceptable balance,
7. Calculate the estimate on your matched dataset,
8. Derive standard errors and construct confidence intervals.
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Nearest-neighbor matching

I Nearest-neighbor matching is similar to blocking if all the
covariates only take discrete values (exact matching).

I But in practice, there may be many covariates, some of which
are continuous.

I We can only match each treated/untreated observation with M
untreated/treated neighbors who are the nearest.

I Xi is never identical to the average covariates of i ’s nearest
neighbors even in large samples.

I This inaccuracy creates severe problems for statistical inference.
I Abadie and Imbens (2006) first derive the asymptotic

distribution of the nearest-neighbor matching estimator.
I It equals to a normal distribution plus an exponential

distribution (the bias).
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Nearest-neighbor matching: algorithm
I Match with M nearest neighbors; replacement is allowed;

covariates can be continuous.
I We impute the counterfactual of each unit with the average of

the matched units.
I For each treated observation i ,

Ŷi (1) =
{

Yi Di = 1
1
M
∑

j∈JM(i) Yj Di = 0,

Ŷi (0) =
{ 1

M
∑

j∈JM(i) Yj Di = 1
Yi Di = 0,

where JM(i) is the set of units matched to i .
I The ATE estimate using matching is

τ̂M = 1
N

N∑
i=1

(Ŷi (1)− Ŷi (0)).

8 / 26



Nearest-neighbor matching: bias (*)

I Denote E [Yi (Di )|Xi ] as mDi (Xi ) and εi = Yi −mDi (Xi ).
I Each unit i might be matched to multiple other units and we

denote the number as KM(i).
I The bias from matching can be decomposed into three parts:

τ̂M − τ = τ(X)− τ + EM + BM

where

τ(X) = 1
N

N∑
i=1

(m1(Xi )−m0(Xi ))

and

EM = 1
N

N∑
i=1

(2Di − 1)
(
1 + KM(i)

M

)
εi
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Nearest-neighbor matching: bias (*)

I Abadie and Imbens (2006) show that both τ(X)− τ (difference
in conditional expectations) and EM (sum of residuals) are
asymptotically small.

I However,

BM = 1
N

N∑
i=1

(2Di − 1)
[
1
M

M∑
m=1

(m1−Di (Xi )−m1−Di (Xjm(i)))
]

is not.
I The bias is caused by “mismatch” between Xi and Xjm(i).
I It can decline to zero very slowly and the convergence rate

decreases with the number of continuous covariates
(OP(N1/κ)).
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Nearest-neighbor matching: bias (*)

I BM actually converges to an exponential distribution.
I Consider a single covariate, M = 5, one treated unit i and 100

untreated ones.
I Suppose j5(i) is the fifth closest neighbor to i , then the

probability for any unit l to be a closer neighbor is
P = P[||Xl − Xi || ≤ ||Xj5(i) − Xi ||].

I There are 4 closer neighbors and 95 more distant neighbors.
I The probability for this event to happen is(

99
4

)
P4(1− P)95

I It obeys the binomial distribution and converges to an
exponential distribution.
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Nearest-neighbor matching: bias

I The bias term is undesirable and makes matching inefficient.
I There is no need to worry about the bias if there is at most one

continuous covariate used for matching.
I Or if the following conditions hold:

1. we are only interested in the ATT,
2. matching is conducted without replacement, and
3. the number of untreated units is much larger than that of the

treated ones (Abadie and Imbens 2012).
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Nearest-neighbor matching: inference (*)

I Abadie and Imbens (2006) prove that
√

N(τ̂M − τ − BM)→ N (0,V )

I We can estimate BM directly using nonparametric regression
and subtract it from τ̂M .

I This is known as the bias correction estimator for NN matching.
I They also provide an estimator for the variance based on

jackknife.
I Lin, Ding, and Han (2023) showed that if we allow M to grow

with N, the bias correction estimator is consistent and efficient.
I Because of the bias, bootstrap cannot be used to approximate

the estimate’s distribution (Abadie and Imbens 2008).
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Propensity score matching: asymptotics

I Note that the propensity score is a unidimensional continuous
variable.

I Matching on the propensity score does not induce the bias
term.

I Abadie and Imbens (2016) show that
√

N(τ̂M − τ)→ N (0,V )

I Since the propensity score is an estimate rather an variable, the
asymptotic variance is affected by its estimation.

I We must account for this extra uncertainty in variance
estimation.

I PS matching requires extra structural restrictions hence is less
agnostic (Ho et al. 2007).

I But it does approximate a block randomization.
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Development of the matching method
I Roadmap:

I Abadie and Imbens (2006): asymptotic distribution for NN
matching (with replacement)

I Abadie and Imbens (2008): bootstrap doesn’t work for NN
matching

I Abadie and Imbens (2011): bias correction matching estimator
I Abadie and Imbens (2012): matching as a martingale (NN

matching without replacement)
I Diamond and Sekhon (2013): finding the optimal distance

metric using evolutionary algorithm
I Abadie and Imbens (2016): asymptotic distribution for PS

matching
I Huber et al. (2016): wild bootstrap for PS matching
I Otsu and Rai (2017): wild bootstrap for NN matching
I Abadie and Spiess (2021): regression after matching is valid

only under the correct specification.
I Armstrong and Kolesár (2021): NN matching is finite-sample

optimal when the outcome is not smooth in covariates
I Lin, Ding, and Han (2023): theoretical results for diverging M
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Misconceptions about matching

I Matching makes your data look like a product of block
randomization.

I It does not guarantee the existence of such a randomization
process.

I It is an estimator rather than an identification assumption.
I Strong ignorability is the pre-condition and cannot be made

more plausible by using any estimator.
I Matching can be used just to ensure positivity by trimming

units that cannot be matched (Imbens 2015).
I But extra steps are needed to account for confounders.
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Matching: application

I Let’s revisit LaLonde (1986).
I We rely on the R-package Matching developed by Jas Sekhon.

## The OLS estimate is 1794.343

## The SE of OLS estimate is 670.9967

## The Lin regression estimate is 1583.468

## The SE of Lin regression estimate is 678.0574
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Matching: application

##
## Estimate... 2050.5
## AI SE...... 1727.8
## T-stat..... 1.1868
## p.val...... 0.23532
##
## Original number of observations.............. 2675
## Original number of treated obs............... 185
## Matched number of observations............... 185
## Matched number of observations (unweighted). 201
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Matching: application

##
## Estimate... 1468.7
## AI SE...... 1385.5
## T-stat..... 1.06
## p.val...... 0.28914
##
## Original number of observations.............. 2675
## Original number of treated obs............... 185
## Matched number of observations............... 185
## Matched number of observations (unweighted). 932
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Matching: application

## mean.Tr mean.Co sdiff T pval
## age 25.816 34.851 -126.266 0.000
## education 10.346 12.117 -88.077 0.000
## black 0.843 0.251 162.564 0.000
## hispanic 0.059 0.033 11.357 0.132
## married 0.189 0.866 -172.406 0.000
## nodegree 0.708 0.305 88.378 0.000
## re74 2095.574 19428.746 -354.707 0.000
## re75 1532.056 19063.338 -544.576 0.000
## u74 0.708 0.086 136.391 0.000
## u75 0.600 0.100 101.786 0.000
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Matching: application

## mean.Tr mean.Co sdiff T pval
## age 25.816 26.288 -6.598 0.368
## education 10.346 10.580 -11.650 0.037
## black 0.843 0.822 5.931 0.102
## hispanic 0.059 0.059 0.000 1.000
## married 0.189 0.195 -1.376 0.564
## nodegree 0.708 0.659 10.672 0.006
## re74 2095.574 2429.660 -6.837 0.004
## re75 1532.056 2251.461 -22.347 0.000
## u74 0.708 0.708 0.000 1.000
## u75 0.600 0.600 0.000 1.000
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Matching: application

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

##
## Estimate... 1687.9
## AI SE...... 1565.4
## T-stat..... 1.0783
## p.val...... 0.28091
##
## Original number of observations.............. 2675
## Original number of treated obs............... 185
## Matched number of observations............... 185
## Matched number of observations (unweighted). 2739
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Matching: application

## mean.Tr mean.Co sdiff T pval
## age 25.816 24.676 15.940 0.092
## education 10.346 10.709 -18.058 0.101
## black 0.843 0.828 4.108 0.694
## hispanic 0.059 0.067 -3.269 0.767
## married 0.189 0.120 17.644 0.021
## nodegree 0.708 0.660 10.585 0.306
## re74 2095.574 2624.597 -10.826 0.233
## re75 1532.056 1862.146 -10.254 0.170
## u74 0.708 0.651 12.431 0.111
## u75 0.600 0.523 15.583 0.084
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