Ye Wang University of North Carolina at Chapel Hill

Linear Methods in Causal Inference POL1784

Review

- We discussed the difference between experiments and observational studies.
- Both require (conditional) randomization of the treatment for causal identification.
- The difference is the we do not know the probability of being treated in the latter.
- We have to estimate nuisance parameters under imposed structural restrictions.
- ▶ We can estimate either propensity scores or response surfaces.

Blocking

- Suppose our data are generated by block randomization.
- We know covariates that are used to form blocks but not the probability of being treated within each block.
- It is a natural idea to recover the blocks first—units with the same covariates values will be allocated into the same group.
- Next, we estimate the CATE in each group and aggregate them to estimate the SATE.
- This method is known as blocking in the literature.
- It does not work when there are many confounders or some confounders are continuous.

- Instead, we can create a block for each unit using similar units (just like kernel regression).
- ▶ For any treated (untreated) unit *i*, we find *M* units from the control (treatment) group that are similar to it in covariates (nearest-neighbor matching or NN matching).
- Or, we find M units from the control (treatment) group that are similar to it in the propensity score (propensity score matching or PS matching).
- ▶ We need to decide the number of neighbors (*M*) and whether replacement is allowed.
- If not, each unit from the control (treatment) group can only be matched to one treated (untreated) unit.
- Not all the units from the control (treatment) group will be matched to a treated (untreated) unit.
- The existence of such units usually suggests the violation of positivity.

- We also need a distance metric to measure how similar two units are.
- A natural choice is the Euclidean distance; but it is sensitive to the units of the variables.
- An alternative is the Mahalanobis distance:

$$d(\mathbf{X}_i, \mathbf{X}_j) = \sqrt{(\mathbf{X}_i - \bar{\mathbf{X}})' \mathbf{S}^{-1} (\mathbf{X}_j - \bar{\mathbf{X}})},$$

where ${\boldsymbol{\mathsf{S}}}$ is a positive-definite matrix such as the variance-covariance matrix of the variables.

 This metric standardizes all the variables such that units no longer matter.

The basic steps are as follows

- 1. Decide your estimand (ATE or ATT),
- Choose the matching method (what covariates to be matched on, NN or PS matching, number of neighbors, with or without replacement, etc.),
- 3. Choose a proper distance metric,
- 4. Find matches on your set of covariates/propensity scores, and get rid of non-matches,
- 5. Check balance in your matched data set,
- 6. Repeat these steps until your set exhibits acceptable balance,
- 7. Calculate the estimate on your matched dataset,
- 8. Derive standard errors and construct confidence intervals.

Nearest-neighbor matching

- Nearest-neighbor matching is similar to blocking if all the covariates only take discrete values (exact matching).
- But in practice, there may be many covariates, some of which are continuous.
- We can only match each treated/untreated observation with M untreated/treated neighbors who are the nearest.
- ► X_i is never identical to the average covariates of i's nearest neighbors even in large samples.
- This inaccuracy creates severe problems for statistical inference.
- Abadie and Imbens (2006) first derive the asymptotic distribution of the nearest-neighbor matching estimator.
- It equals to a normal distribution plus an exponential distribution (the bias).

Nearest-neighbor matching: algorithm

- Match with *M* nearest neighbors; replacement is allowed; covariates can be continuous.
- We impute the counterfactual of each unit with the average of the matched units.
- ▶ For each treated observation *i*,

$$\hat{Y}_i(1) = egin{cases} Y_i & D_i = 1 \ rac{1}{M}\sum_{j\in\mathcal{J}_M(i)}Y_j & D_i = 0, \ \hat{Y}_i(0) = egin{cases} rac{1}{M}\sum_{j\in\mathcal{J}_M(i)}Y_j & D_i = 1 \ Y_i & D_i = 0, \ \end{cases}$$

where J_M(i) is the set of units matched to i.
The ATE estimate using matching is

$$\hat{\tau}_M = \frac{1}{N} \sum_{i=1}^N (\widehat{Y}_i(1) - \widehat{Y}_i(0)).$$

Nearest-neighbor matching: bias (*)

- Denote $E[Y_i(D_i)|\mathbf{X}_i]$ as $m_{D_i}(\mathbf{X}_i)$ and $\varepsilon_i = Y_i m_{D_i}(\mathbf{X}_i)$.
- Each unit *i* might be matched to multiple other units and we denote the number as K_M(*i*).
- The bias from matching can be decomposed into three parts:

$$\hat{\tau}_{M} - \tau = \overline{\tau(\mathbf{X})} - \tau + E_{M} + B_{M}$$

where

$$\overline{\tau(\mathbf{X})} = \frac{1}{N} \sum_{i=1}^{N} (m_1(\mathbf{X}_i) - m_0(\mathbf{X}_i))$$

and

$$E_M = \frac{1}{N} \sum_{i=1}^{N} (2D_i - 1) \left(1 + \frac{K_M(i)}{M}\right) \varepsilon_i$$

Nearest-neighbor matching: bias (*)

- Abadie and Imbens (2006) show that both $\overline{\tau(\mathbf{X})} \tau$ (difference in conditional expectations) and E_M (sum of residuals) are asymptotically small.
- However,

$$B_{M} = \frac{1}{N} \sum_{i=1}^{N} (2D_{i} - 1) \left[\frac{1}{M} \sum_{m=1}^{M} (m_{1-D_{i}}(\mathbf{X}_{i}) - m_{1-D_{i}}(\mathbf{X}_{j_{m}(i)})) \right]$$

is not.

- ▶ The bias is caused by "mismatch" between X_i and $X_{j_m(i)}$.
- ► It can decline to zero very slowly and the convergence rate decreases with the number of continuous covariates (O_P(N^{1/κ})).

Nearest-neighbor matching: bias (*)

- ▶ *B_M* actually converges to an exponential distribution.
- Consider a single covariate, M = 5, one treated unit i and 100 untreated ones.
- Suppose j₅(i) is the fifth closest neighbor to i, then the probability for any unit l to be a closer neighbor is P = P[||X_l − X_i|| ≤ ||X_{j₅(i)} − X_i||].
- ► There are 4 closer neighbors and 95 more distant neighbors.
- The probability for this event to happen is

$$\binom{99}{4} P^4 (1-P)^{95}$$

It obeys the binomial distribution and converges to an exponential distribution.

Nearest-neighbor matching: bias

- The bias term is undesirable and makes matching inefficient.
- There is no need to worry about the bias if there is at most one continuous covariate used for matching.
- Or if the following conditions hold:
 - $1. \ \mbox{we are only interested in the ATT,}$
 - 2. matching is conducted without replacement, and
 - 3. the number of untreated units is much larger than that of the treated ones (Abadie and Imbens 2012).

Nearest-neighbor matching: inference (*)

Abadie and Imbens (2006) prove that

$$\sqrt{N}(\hat{\tau}_M - \tau - B_M) \rightarrow \mathcal{N}(0, V)$$

- We can estimate B_M directly using nonparametric regression and subtract it from $\hat{\tau}_M$.
- This is known as the bias correction estimator for NN matching.
- They also provide an estimator for the variance based on jackknife.
- ▶ Lin, Ding, and Han (2023) showed that if we allow *M* to grow with *N*, the bias correction estimator is consistent and efficient.
- Because of the bias, bootstrap cannot be used to approximate the estimate's distribution (Abadie and Imbens 2008).

Propensity score matching: asymptotics

- Note that the propensity score is a unidimensional continuous variable.
- Matching on the propensity score does not induce the bias term.
- Abadie and Imbens (2016) show that

$$\sqrt{N}(\hat{\tau}_M - \tau) \rightarrow \mathcal{N}(0, V)$$

- Since the propensity score is an estimate rather an variable, the asymptotic variance is affected by its estimation.
- We must account for this extra uncertainty in variance estimation.
- PS matching requires extra structural restrictions hence is less agnostic (Ho et al. 2007).
- But it does approximate a block randomization.

Development of the matching method

- Roadmap:
 - Abadie and Imbens (2006): asymptotic distribution for NN matching (with replacement)
 - Abadie and Imbens (2008): bootstrap doesn't work for NN matching
 - ► Abadie and Imbens (2011): bias correction matching estimator
 - Abadie and Imbens (2012): matching as a martingale (NN matching without replacement)
 - Diamond and Sekhon (2013): finding the optimal distance metric using evolutionary algorithm
 - Abadie and Imbens (2016): asymptotic distribution for PS matching
 - ▶ Huber et al. (2016): wild bootstrap for PS matching
 - Otsu and Rai (2017): wild bootstrap for NN matching
 - Abadie and Spiess (2021): regression after matching is valid only under the correct specification.
 - Armstrong and Kolesár (2021): NN matching is finite-sample optimal when the outcome is not smooth in covariates
 - Lin, Ding, and Han (2023): theoretical results for diverging M

Misconceptions about matching

- Matching makes your data look like a product of block randomization.
- It does not guarantee the existence of such a randomization process.
- It is an estimator rather than an identification assumption.
- Strong ignorability is the pre-condition and cannot be made more plausible by using any estimator.
- Matching can be used just to ensure positivity by trimming units that cannot be matched (Imbens 2015).
- But extra steps are needed to account for confounders.

- Let's revisit LaLonde (1986).
- ▶ We rely on the R-package *Matching* developed by Jas Sekhon.
- ## The OLS estimate is 1794.343
- ## The SE of OLS estimate is 670.9967
- ## The Lin regression estimate is 1583.468
- ## The SE of Lin regression estimate is 678.0574

##		
##	Estimate 2	050.5
##	AI SE 1	727.8
##	T-stat 1	.1868
##	p.val 0	.23532
##		
##	Original numbe	r of observations

## Original number of observations	2675
## Original number of treated obs	185
## Matched number of observations	185
## Matched number of observations (unweighted	ł). 201

##	
## Estimate 1468.7	
## AI SE 1385.5	
## T-stat 1.06	
## p.val 0.28914	
##	
<pre>## Original number of observations</pre>	2675
## Original number of treated obs	185
## Matched number of observations	185
## Matched number of observations (unweighted).	932

##		mean.Tr	mean.Co	sdiff	T pval
##	age	25.816	34.851	-126.266	0.000
##	education	10.346	12.117	-88.077	0.000
##	black	0.843	0.251	162.564	0.000
##	hispanic	0.059	0.033	11.357	0.132
##	married	0.189	0.866	-172.406	0.000
##	nodegree	0.708	0.305	88.378	0.000
##	re74	2095.574	19428.746	-354.707	0.000
##	re75	1532.056	19063.338	-544.576	0.000
##	u74	0.708	0.086	136.391	0.000
##	u75	0.600	0.100	101.786	0.000

##		mean.Tr	mean.Co	sdiff	T pval
##	age	25.816	26.288	-6.598	0.368
##	education	10.346	10.580	-11.650	0.037
##	black	0.843	0.822	5.931	0.102
##	hispanic	0.059	0.059	0.000	1.000
##	married	0.189	0.195	-1.376	0.564
##	nodegree	0.708	0.659	10.672	0.006
##	re74	2095.574	2429.660	-6.837	0.004
##	re75	1532.056	2251.461	-22.347	0.000
##	u74	0.708	0.708	0.000	1.000
##	u75	0.600	0.600	0.000	1.000

```
## Warning: glm.fit: fitted probabilities numerically 0 or
##
## Estimate... 1687.9
## AI SE.... 1565.4
## T-stat.... 1.0783
## p.val..... 0.28091
##
  Original number of observations.....
                                              2675
##
  Original number of treated obs.....
                                              185
##
## Matched number of observations.....
                                              185
## Matched number of observations (unweighted).
                                              2739
```

##		mean.Tr	mean.Co	sdiff	T pval
##	age	25.816	24.676	15.940	0.092
##	education	10.346	10.709	-18.058	0.101
##	black	0.843	0.828	4.108	0.694
##	hispanic	0.059	0.067	-3.269	0.767
##	married	0.189	0.120	17.644	0.021
##	nodegree	0.708	0.660	10.585	0.306
##	re74	2095.574	2624.597	-10.826	0.233
##	re75	1532.056	1862.146	-10.254	0.170
##	u74	0.708	0.651	12.431	0.111
##	u75	0.600	0.523	15.583	0.084

References I

Abadie, Alberto, and Guido W Imbens. 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects." *Econometrica* 74 (1): 235–67.

———. 2008. "On the Failure of the Bootstrap for Matching Estimators." *Econometrica* 76 (6): 1537–57.

 — 2011. "Bias-Corrected Matching Estimators for Average Treatment Effects." *Journal of Business & Economic Statistics* 29 (1): 1–11.

 2012. "A Martingale Representation for Matching Estimators." *Journal of the American Statistical Association* 107 (498): 833–43.

——. 2016. "Matching on the Estimated Propensity Score." *Econometrica* 84 (2): 781–807.

Abadie, Alberto, and Jann Spiess. 2021. "Robust Post-Matching Inference." *Journal of the American Statistical Association*, 1–13.

References II

- Armstrong, Timothy B, and Michal Kolesár. 2021. "Finite-Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness." *Econometrica* 89 (3): 1141–77.
- Diamond, Alexis, and Jasjeet S Sekhon. 2013. "Genetic Matching for Estimating Causal Effects: A General Multivariate Matching Method for Achieving Balance in Observational Studies." *Review* of Economics and Statistics 95 (3): 932–45.
- Ho, Daniel E, Kosuke Imai, Gary King, and Elizabeth A Stuart.
 2007. "Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference." *Political Analysis* 15 (3): 199–236.
- Huber, Martin, Lorenzo Camponovo, Hugo Bodory, and Michael Lechner. 2016. "A Wild Bootstrap Algorithm for Propensity Score Matching Estimators." Université de Fribourg.
 Imbens, Guido W. 2015. "Matching Methods in Practice: Three Examples." Journal of Human Resources 50 (2): 373–419.

References III

- LaLonde, Robert J. 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data." *The American Economic Review*, 604–20.
- Lin, Zhexiao, Peng Ding, and Fang Han. 2023. "Estimation Based on Nearest Neighbor Matching: From Density Ratio to Average Treatment Effect." *Econometrica* 91 (6): 2187–217.
- Otsu, Taisuke, and Yoshiyasu Rai. 2017. "Bootstrap Inference of Matching Estimators for Average Treatment Effects." *Journal of the American Statistical Association* 112 (520): 1720–32.