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Review

I In sharp RDD, the treatment is determined by the value of the
running variable.

I We can only identify the causal effect for units at the cutoff.
I We assume the continuity of the expected outcome across the

cutoff and rely on kernel regression for estimation.
I It is necessary to evaluate the assumption of continuity with

placebo outcomes, placebo cutoffs, and the McCrary test.
I Bandwidth is selected to minimize the MSE of the intercept

estimates.
I Bias correction ensures that the estimate converges to a normal

distribution.
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Fuzzy RDD

I Today we are going to discuss several variants of the sharp
RDD.

I The first variant is the fuzzy RDD, in which Di is affected by
Zi in the following way:

Di =
{

Di (1) if 1{Zi ≥ 0}
Di (0) if 1{Zi < 0}

I Di (1) may not be 1 and Di (0) may not be 0.
I In other words, we now have non-compliance in the ideal

experiment.
I 1{Zi ≥ 0} is an instrument of Di .
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Fuzzy RDD

I 1{Zi ≥ 0} should satisfy all the requirements for an instrument.
I Then, we can identify the treatment effect on the compliers

when Zi = 0:

τFRD = E [Yi (1)− Yi (0)|Zi = 0]
E [Di (1)− Di (0)|Zi = 0] .

I Naturally, we can estimate the quantity with

τ̂FRD = µ̂Y + − µ̂Y−
µ̂D+ − µ̂D−

.

where all the four intercepts are estimated via local regression
as in the previous lecture.
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Fuzzy RDD

I τ̂FRD is a Wald estimator and approximately a linear
combination of two sharp RDD estimates (one for Y and the
other for D).

I Bias correction is also necessary for the estimate to be
asymptotically normal.

I It must be conducted for both sharp RDD estimators.
I Calonico, Cattaneo, and Titiunik (2014) show that

τ̂bc
FRD − τFRD√

Var [τ̂bc
FRD]

→ N(0, 1)

under the same condition: N min{b5, h5}max{b2, h2} → 0.
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Kink

I In a kink design, the treatment’s level may not vary across the
cutoff, but its rate of change might.

I For example, Yi is the duration of unemployment, Di is the
level of unemployment insurance, and Zi is one’s pre-job-loss
earnings.

I We want to estimate how Yi responses to the change of Di .
I Clearly, the correlation between Yi and Di is inevitably driven

by confounders.
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Kink
I Suppose the level of unemployment insurance equals to one’s

pre-job-loss earnings but there is a cap: Di = min{Zi , 2000}:
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Kink

I We can exploit this kink in the treatment to identify the
response of the outcome to the treatment.

I Notice that the treatment is a deterministic and continuous
function of running variable, D = d(z).

I Suppose there is also a kink in the outcome across the cutoff,
then the quantity of interest is

τSKRD =
µ

(1)
+ − µ

(1)
−

d (1)
+ − d (1)

−

where d (1)
+ = limz→0+

d(d(z))
dz (D(1)

− is similarly defined).
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Kink

I Card et al. (2015) assume a non-separable outcome model

Y = y(D,Z ,U),

where U represents unobservable confounders.
I Card et al. (2015) show that τSKRD equals to the “local

average response” defined in Altonji and Matzkin (2005):

τSKRD =
∫

u

∂y(d , z , u)
∂d |d=d(0)

fZ |U=u(0)
fZ (0) fU(u)du.

I It equals to the average marginal effect if U and Z are
independent.
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Kink

I The denominator is not at random and can be directly
obtained.

I The numerator is the difference between two slopes and they
can be similarly estimated via local regression.

I The asymptotic distribution of the numerator can be derived
based on the theory in Calonico, Cattaneo, and Titiunik (2014):

τ̂bc
SKRD − τSKRD√

Var [τ̂bc
SKRD]

→ N(0, 1)

as long as N min{b7
N , h7

N}max{b2
N , h2

N} → 0.
I In theory, we can estimate higher order derivatives but their

substantive meanings are unclear.
I We also have the fuzzy kink design where there is

non-compliance in the treatment.
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Multidimensional RDD
I So far, we have assumed that the running variable Zi is

uni-dimensional.
I But in practice, Zi could be the location of unit i on a

geography, which is decided by both its latitude and longitude.
I L. J. Keele and Titiunik (2015) show that the identification

assumption is that µ(·) is continuous along both dimensions
across the cutoff (border).

I First, we select a series of locations along the border.
I Next, we apply the local regression estimator to generate one

estimate for each location.
I Each unit is weighted by its distance to this location.
I Finally, we aggregate the estimates by re-weighting them with

the density at the corresponding location.
I Another option is to use the minimum distance to the border

as a uni-dimensional running variable.
I This approach 1. loses information and 2. prevents us from

seeing the heterogeneity in treatment effects.
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Multidimensional RDD

I It is usually harder to clarify what the treatment captures when
Zi is multi-dimensional (Dell, Lane, and Querubin 2018).

I Many things change together across the border of an
administrative unit.

I Sorting (immigration) and autocorrelation are more likely to
occur in the spatial setting.

I L. Keele, Titiunik, and Zubizarreta (2015) propose that
researchers first match units on both covariates and their
geographic locations and then generate RDD estimates on the
matched sample.

I The validity of the method relies on the perspective of local
randomization (see below).
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RDD with multiple cutoffs

I When there are multiple cutoffs in the sample, researchers
usually normalize the data such that all cutoffs equal to zero
and run a pooled RDD.

I Cattaneo et al. (2016) show that the obtained estimate is a
weighted average of the effect at each cutoff.

I The weights are proportional to the conditional density at each
cutoff point f (c|C = c), where f (Z |C) is the density of the
running variable when the cutoff is C .

I The estimate has various interpretations under different
assumptions.

I Researchers can also estimate the effect around each cutoff and
then take their average.
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RDD with multiple cutoffs

I Cattaneo et al. (2020) further argue that the existence of
multiple cutoffs helps us extrapolate results from RDD.

14 / 23



RDD with multiple cutoffs

I It requires an assumption that is similar to “parallel trends”.
I Suppose there are two groups H and L with cutoffs h and l

(l < h), respectively.
I Only the outcomes of units in L change across l (ef ).
I In addition, we assume that without the treatment, the

conditional expectation of the outcome increases with z at the
same rate across the two group: ed = bc.

I Then, we can estimate the treatment effect at x̄ as

τ̂(x̄) = ab = ac − bc = ac − de.
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RDD with a discrete running variable

I The classic theory developed in Calonico, Cattaneo, and
Titiunik (2014) runs into difficulties when the running variable
is discrete.

I By definition, there cannot be more observations around the
cutoff point as N increases.

I Kolesár and Rothe (2018) provide a finite-sample confidence
interval in this case.

I The CI does not rely on asymptotics and holds for any fixed N.
I The intuition is to bound the curvature of µ(z) and consider

the worst scenario.
I The RDD estimator is also a weighting estimator.
I We can directly search for weights that optimize the

bias-variance tradeoff.
I It can be implemented with the package RDHonest.
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RDD in time

I In practice, people have been using RDD with time as the
running variable (RDiT).

I Hausman and Rapson (2018) reviewed common issues with this
method.

I They suggest that researchers should first account for the
influence of temporal shocks such as weather or seasonality.

I Then, the classical estimator is applied to the residuals.
I More justifications are needed for this method.
I Time is always a discrete running variable.
I Which time interval should we use?
I What if the effect manifests gradually over time?
I What should we do when there are multiple treated units?
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RDD as a local randomization

I We have discussed that the classic RDD can be seen as a
simple experiment when Z = 0.

I Yet the conventional analysis is not a design-based approach as
we do not try to model the assignment process.

I A recent perspective treats RDD as an experiment that is
implemented where Z ∈ [−h, h].

I If we know h, classic approaches (regression, weighting,
matching, etc.) can be applied to estimate the treatment
effect.

I Cattaneo, Frandsen, and Titiunik (2015) suggest that we
should find h by balancing all the covariates.
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RDD as a local randomization

I Eckles et al. (2020) extend this idea and argue that Z should
be seen as a noisy measure of the true confounder U.

I For example, Ui is one’s true capability and Zi is her test score.
I We assume the measurement error is normally distributed

Zi |Ui ∼ N (Ui , ν
2)

and conditionally independent to the potential outcomes

{Yi (1),Yi (0)} ⊥ Zi |Ui

I The assumptions imply that

{Yi (1),Yi (0)} ⊥ Di |Ui

and the only issue is that Ui is unobservable.
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RDD as a local randomization

I Eckles et al. (2020) claim that it is possible to estimate the
causal effect using the noisy measure Zi .

I When the confounders are observable, all we need to do is to
balance the confounders.

I Now the confounder is unobservable, hence we should balance
a functional f of its noisy measure Zi .

I Zi contains information of Ui and we know their relationship.
I If f (Zi ) is balanced and f is properly chosen, we expect Ui to

be balanced as well.
I They analyzed an example where Ui is the true level of CD4

count for HIV carriers and Zi is the measured level.
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