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Review

In sharp RDD, the treatment is determined by the value of the
running variable.

» We can only identify the causal effect for units at the cutoff.

We assume the continuity of the expected outcome across the
cutoff and rely on kernel regression for estimation.

It is necessary to evaluate the assumption of continuity with
placebo outcomes, placebo cutoffs, and the McCrary test.
Bandwidth is selected to minimize the MSE of the intercept
estimates.

Bias correction ensures that the estimate converges to a normal
distribution.
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Fuzzy RDD

Today we are going to discuss several variants of the sharp
RDD.

The first variant is the fuzzy RDD, in which D; is affected by
Z; in the following way:

b _ | Di(1) if1{Z; > 0}
" Di(0) if 1{Z; < 0}

» D;(1) may not be 1 and D;(0) may not be 0.

In other words, we now have non-compliance in the ideal
experiment.

1{Z; > 0} is an instrument of D;.
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Fuzzy RDD

» 1{Z; > 0} should satisfy all the requirements for an instrument.
Then, we can identify the treatment effect on the compliers

when Z; = 0:

>

_E[V(1) - Yi(0)Z = 0]
TFRD = E[D;(1) — D;(0)[Z; = 0’

» Naturally, we can estimate the quantity with

where all the four intercepts are estimated via local regression

as in the previous lecture.
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Fuzzy RDD

> 7erp is a Wald estimator and approximately a linear
combination of two sharp RDD estimates (one for Y and the
other for D).

» Bias correction is also necessary for the estimate to be
asymptotically normal.

» It must be conducted for both sharp RDD estimators.

» Calonico, Cattaneo, and Titiunik (2014) show that

Frko — TERD_ py(0, 1)

Var [%I[—BI%D]

under the same condition: N min{b®, h%} max{b?, h’} — 0.
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Kink

> In a kink design, the treatment'’s level may not vary across the
cutoff, but its rate of change might.

» For example, Y; is the duration of unemployment, D; is the
level of unemployment insurance, and Z; is one's pre-job-loss
earnings.

» We want to estimate how Y; responses to the change of D;.

» Clearly, the correlation between Y; and D; is inevitably driven
by confounders.
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Kink
» Suppose the level of unemployment insurance equals to one's
pre-job-loss earnings but there is a cap: D; = min{Z;,2000}:
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Kink

> We can exploit this kink in the treatment to identify the
response of the outcome to the treatment.

» Notice that the treatment is a deterministic and continuous
function of running variable, D = d(z).

» Suppose there is also a kink in the outcome across the cutoff,
then the quantity of interest is

TSKRD = Py —H—
dJ(rl) O]
where dJ(rl) = lim,_0, @ (D(_l) is similarly defined).



Kink

» Card et al. (2015) assume a non-separable outcome model
Y =y(D,Z,U),

where U represents unobservable confounders.
» Card et al. (2015) show that 7skgrp equals to the “local
average response” defined in Altonji and Matzkin (2005):

dy(d,z,u fzju=u(0)
TsKRD:/y(ad)|dd(o)fZ(O)fU(U)dU-

> It equals to the average marginal effect if U and Z are
independent.
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Kink

The denominator is not at random and can be directly
obtained.

The numerator is the difference between two slopes and they
can be similarly estimated via local regression.

The asymptotic distribution of the numerator can be derived

based on the theory in Calonico, Cattaneo, and Titiunik (2014):

b
TSkRD — TSKRD
/ ~b
Var[#ggrp]

as long as N min{bf, hi,} max{b3, h%} — 0.

In theory, we can estimate higher order derivatives but their
substantive meanings are unclear.

We also have the fuzzy kink design where there is
non-compliance in the treatment.

— N(0,1)
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Multidimensional RDD

>

So far, we have assumed that the running variable Z; is
uni-dimensional.
But in practice, Z; could be the location of unit i on a

geography, which is decided by both its latitude and longitude.

L. J. Keele and Titiunik (2015) show that the identification
assumption is that u(-) is continuous along both dimensions
across the cutoff (border).

» First, we select a series of locations along the border.

Next, we apply the local regression estimator to generate one
estimate for each location.

Each unit is weighted by its distance to this location.

Finally, we aggregate the estimates by re-weighting them with
the density at the corresponding location.

Another option is to use the minimum distance to the border
as a uni-dimensional running variable.

This approach 1. loses information and 2. prevents us from
seeing the heterogeneity in treatment effects.
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Multidimensional RDD

» It is usually harder to clarify what the treatment captures when
Z; is multi-dimensional (Dell, Lane, and Querubin 2018).

» Many things change together across the border of an
administrative unit.

» Sorting (immigration) and autocorrelation are more likely to
occur in the spatial setting.

» L. Keele, Titiunik, and Zubizarreta (2015) propose that
researchers first match units on both covariates and their
geographic locations and then generate RDD estimates on the
matched sample.

» The validity of the method relies on the perspective of local
randomization (see below).
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RDD with multiple cutoffs

» When there are multiple cutoffs in the sample, researchers
usually normalize the data such that all cutoffs equal to zero
and run a pooled RDD.

» Cattaneo et al. (2016) show that the obtained estimate is a
weighted average of the effect at each cutoff.

» The weights are proportional to the conditional density at each
cutoff point f(c|C = c), where f(Z|C) is the density of the
running variable when the cutoff is C.

» The estimate has various interpretations under different
assumptions.

> Researchers can also estimate the effect around each cutoff and
then take their average.
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RDD with multiple cutoffs

» Cattaneo et al. (2020) further argue that the existence of
multiple cutoffs helps us extrapolate results from RDD.
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RDD with multiple cutoffs

> It requires an assumption that is similar to “parallel trends”.

» Suppose there are two groups H and L with cutoffs h and /
(I < h), respectively.

» Only the outcomes of units in L change across / (ef ).

» |n addition, we assume that without the treatment, the
conditional expectation of the outcome increases with z at the
same rate across the two group: ed = bc.

» Then, we can estimate the treatment effect at x as

#(x) = ab = ac — bc = ac — de.
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RDD with a discrete running variable

» The classic theory developed in Calonico, Cattaneo, and
Titiunik (2014) runs into difficulties when the running variable
is discrete.

» By definition, there cannot be more observations around the
cutoff point as N increases.

» Kolesar and Rothe (2018) provide a finite-sample confidence
interval in this case.

» The Cl does not rely on asymptotics and holds for any fixed N.

» The intuition is to bound the curvature of ;(z) and consider
the worst scenario.

» The RDD estimator is also a weighting estimator.

» We can directly search for weights that optimize the
bias-variance tradeoff.

> It can be implemented with the package RDHonest.
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RDD in time

vV VvV VY VY VY

In practice, people have been using RDD with time as the
running variable (RDiT).

Hausman and Rapson (2018) reviewed common issues with this
method.

They suggest that researchers should first account for the
influence of temporal shocks such as weather or seasonality.
Then, the classical estimator is applied to the residuals.
More justifications are needed for this method.

Time is always a discrete running variable.

Which time interval should we use?

What if the effect manifests gradually over time?

What should we do when there are multiple treated units?
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RDD as a local randomization

» We have discussed that the classic RDD can be seen as a
simple experiment when Z = 0.

» Yet the conventional analysis is not a design-based approach as
we do not try to model the assignment process.

> A recent perspective treats RDD as an experiment that is
implemented where Z € [—h, h].

» If we know h, classic approaches (regression, weighting,
matching, etc.) can be applied to estimate the treatment
effect.

» Cattaneo, Frandsen, and Titiunik (2015) suggest that we
should find h by balancing all the covariates.
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RDD as a local randomization

> Eckles et al. (2020) extend this idea and argue that Z should
be seen as a noisy measure of the true confounder U.

» For example, U; is one's true capability and Z; is her test score.

» We assume the measurement error is normally distributed
Zi|Ui ~ N(U;, )
and conditionally independent to the potential outcomes
{Yi(1), vi(0)} L Z|U;
» The assumptions imply that
{Yi(1), Yi(0)} L D} U;

and the only issue is that U; is unobservable.
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RDD as a local randomization

» Eckles et al. (2020) claim that it is possible to estimate the
causal effect using the noisy measure Z;.

» When the confounders are observable, all we need to do is to
balance the confounders.

» Now the confounder is unobservable, hence we should balance
a functional f of its noisy measure Z;.

» Z; contains information of U; and we know their relationship.

» If f(Z;) is balanced and f is properly chosen, we expect U; to
be balanced as well.

» They analyzed an example where U; is the true level of CD4
count for HIV carriers and Z; is the measured level.
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