Regression Discontinuity Design II

Ye Wang University of North Carolina at Chapel Hill

Linear Methods in Causal Inference POL1784

Review

- In sharp RDD, the treatment is determined by the value of the running variable.
- We can only identify the causal effect for units at the cutoff.
- We assume the continuity of the expected outcome across the cutoff and rely on kernel regression for estimation.
- It is necessary to evaluate the assumption of continuity with placebo outcomes, placebo cutoffs, and the McCrary test.
- Bandwidth is selected to minimize the MSE of the intercept estimates.
- Bias correction ensures that the estimate converges to a normal distribution.

Fuzzy RDD

- Today we are going to discuss several variants of the sharp RDD.
- The first variant is the fuzzy RDD, in which D_i is affected by Z_i in the following way:

$$D_i = \begin{cases} D_i(1) \text{ if } \mathbf{1}\{Z_i \ge 0\} \\ D_i(0) \text{ if } \mathbf{1}\{Z_i < 0\} \end{cases}$$

- $D_i(1)$ may not be 1 and $D_i(0)$ may not be 0.
- In other words, we now have non-compliance in the ideal experiment.
- $\mathbf{1}\{Z_i \ge 0\}$ is an instrument of D_i .

Fuzzy RDD

▶ 1{Z_i ≥ 0} should satisfy all the requirements for an instrument.
▶ Then, we can identify the treatment effect on the compliers when Z_i = 0:

$$\tau_{FRD} = \frac{E[Y_i(1) - Y_i(0)|Z_i = 0]}{E[D_i(1) - D_i(0)|Z_i = 0]}.$$

Naturally, we can estimate the quantity with

$$\hat{\tau}_{FRD} = \frac{\hat{\mu}_{Y+} - \hat{\mu}_{Y-}}{\hat{\mu}_{D+} - \hat{\mu}_{D-}}.$$

where all the four intercepts are estimated via local regression as in the previous lecture.

Fuzzy RDD

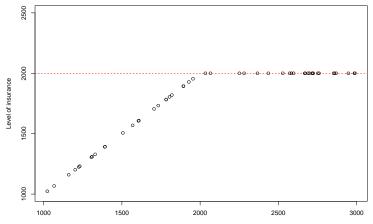
- ▶ *î*_{FRD} is a Wald estimator and approximately a linear combination of two sharp RDD estimates (one for Y and the other for D).
- Bias correction is also necessary for the estimate to be asymptotically normal.
- It must be conducted for both sharp RDD estimators.
- ▶ Calonico, Cattaneo, and Titiunik (2014) show that

$$\frac{\hat{\tau}_{FRD}^{bc} - \tau_{FRD}}{\sqrt{Var[\hat{\tau}_{FRD}^{bc}]}} \rightarrow N(0, 1)$$

under the same condition: $N\min\{b^5, h^5\}\max\{b^2, h^2\} \to 0$.

- In a kink design, the treatment's level may not vary across the cutoff, but its rate of change might.
- ▶ For example, Y_i is the duration of unemployment, D_i is the level of unemployment insurance, and Z_i is one's pre-job-loss earnings.
- We want to estimate how Y_i responses to the change of D_i .
- Clearly, the correlation between Y_i and D_i is inevitably driven by confounders.

Suppose the level of unemployment insurance equals to one's pre-job-loss earnings but there is a cap: D_i = min{Z_i, 2000}:



Pre-job-loss earnings

- We can exploit this kink in the treatment to identify the response of the outcome to the treatment.
- Notice that the treatment is a deterministic and continuous function of running variable, D = d(z).
- Suppose there is also a kink in the outcome across the cutoff, then the quantity of interest is

$$au_{SKRD} = rac{\mu_+^{(1)} - \mu_-^{(1)}}{d_+^{(1)} - d_-^{(1)}}$$

where $d_{+}^{(1)} = \lim_{z \to 0_{+}} \frac{d(d(z))}{dz} (D_{-}^{(1)} \text{ is similarly defined}).$

► Card et al. (2015) assume a non-separable outcome model

$$Y=y(D,Z,U),$$

where U represents unobservable confounders.

 Card et al. (2015) show that *τ_{SKRD}* equals to the "local average response" defined in Altonji and Matzkin (2005):

$$\tau_{SKRD} = \int_{u} \frac{\partial y(d, z, u)}{\partial d} |_{d=d(0)} \frac{f_{Z|U=u}(0)}{f_{Z}(0)} f_{U}(u) du.$$

It equals to the average marginal effect if U and Z are independent.

- The denominator is not at random and can be directly obtained.
- The numerator is the difference between two slopes and they can be similarly estimated via local regression.
- The asymptotic distribution of the numerator can be derived based on the theory in Calonico, Cattaneo, and Titiunik (2014):

$$\frac{\hat{\tau}_{SKRD}^{bc} - \tau_{SKRD}}{\sqrt{Var[\hat{\tau}_{SKRD}^{bc}]}} \rightarrow N(0,1)$$

as long as $N\min\{b_N^7, h_N^7\}\max\{b_N^2, h_N^2\} \to 0$.

- In theory, we can estimate higher order derivatives but their substantive meanings are unclear.
- We also have the fuzzy kink design where there is non-compliance in the treatment.

Multidimensional RDD

- ► So far, we have assumed that the running variable Z_i is uni-dimensional.
- But in practice, Z_i could be the location of unit i on a geography, which is decided by both its latitude and longitude.
- L. J. Keele and Titiunik (2015) show that the identification assumption is that $\mu(\cdot)$ is continuous along both dimensions across the cutoff (border).
- First, we select a series of locations along the border.
- Next, we apply the local regression estimator to generate one estimate for each location.
- Each unit is weighted by its distance to this location.
- Finally, we aggregate the estimates by re-weighting them with the density at the corresponding location.
- Another option is to use the minimum distance to the border as a uni-dimensional running variable.
- This approach 1. loses information and 2. prevents us from seeing the heterogeneity in treatment effects.

Multidimensional RDD

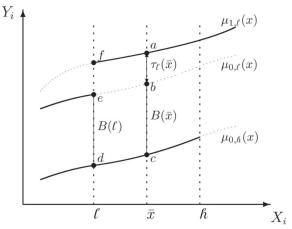
- It is usually harder to clarify what the treatment captures when Z_i is multi-dimensional (Dell, Lane, and Querubin 2018).
- Many things change together across the border of an administrative unit.
- Sorting (immigration) and autocorrelation are more likely to occur in the spatial setting.
- L. Keele, Titiunik, and Zubizarreta (2015) propose that researchers first match units on both covariates and their geographic locations and then generate RDD estimates on the matched sample.
- The validity of the method relies on the perspective of local randomization (see below).

RDD with multiple cutoffs

- When there are multiple cutoffs in the sample, researchers usually normalize the data such that all cutoffs equal to zero and run a pooled RDD.
- Cattaneo et al. (2016) show that the obtained estimate is a weighted average of the effect at each cutoff.
- ▶ The weights are proportional to the conditional density at each cutoff point f(c|C = c), where f(Z|C) is the density of the running variable when the cutoff is C.
- The estimate has various interpretations under different assumptions.
- Researchers can also estimate the effect around each cutoff and then take their average.

RDD with multiple cutoffs

 Cattaneo et al. (2020) further argue that the existence of multiple cutoffs helps us extrapolate results from RDD.



RDD with multiple cutoffs

- It requires an assumption that is similar to "parallel trends".
- Suppose there are two groups H and L with cutoffs h and l (l < h), respectively.</p>
- Only the outcomes of units in L change across $I(\overline{ef})$.
- ► In addition, we assume that without the treatment, the conditional expectation of the outcome increases with z at the same rate across the two group: ed = bc.
- Then, we can estimate the treatment effect at \bar{x} as

$$\hat{\tau}(\bar{x}) = \overline{ab} = \overline{ac} - \overline{bc} = \overline{ac} - \overline{de}.$$

RDD with a discrete running variable

- The classic theory developed in Calonico, Cattaneo, and Titiunik (2014) runs into difficulties when the running variable is discrete.
- ► By definition, there cannot be more observations around the cutoff point as *N* increases.
- Kolesár and Rothe (2018) provide a finite-sample confidence interval in this case.
- ► The CI does not rely on asymptotics and holds for any fixed *N*.
- ► The intuition is to bound the curvature of µ(z) and consider the worst scenario.
- The RDD estimator is also a weighting estimator.
- We can directly search for weights that optimize the bias-variance tradeoff.
- ► It can be implemented with the package *RDHonest*.

RDD in time

- In practice, people have been using RDD with time as the running variable (RDiT).
- Hausman and Rapson (2018) reviewed common issues with this method.
- They suggest that researchers should first account for the influence of temporal shocks such as weather or seasonality.
- Then, the classical estimator is applied to the residuals.
- More justifications are needed for this method.
- Time is always a discrete running variable.
- Which time interval should we use?
- What if the effect manifests gradually over time?
- What should we do when there are multiple treated units?

RDD as a local randomization

- ► We have discussed that the classic RDD can be seen as a simple experiment when Z = 0.
- Yet the conventional analysis is not a design-based approach as we do not try to model the assignment process.
- A recent perspective treats RDD as an experiment that is implemented where Z ∈ [−h, h].
- If we know h, classic approaches (regression, weighting, matching, etc.) can be applied to estimate the treatment effect.
- Cattaneo, Frandsen, and Titiunik (2015) suggest that we should find h by balancing all the covariates.

RDD as a local randomization

- Eckles et al. (2020) extend this idea and argue that Z should be seen as a noisy measure of the true confounder U.
- For example, U_i is one's true capability and Z_i is her test score.
- We assume the measurement error is normally distributed

$$Z_i | U_i \sim \mathcal{N}(U_i, \nu^2)$$

and conditionally independent to the potential outcomes

 $\{Y_i(1), Y_i(0)\} \perp Z_i | U_i$

The assumptions imply that

 $\{Y_i(1), Y_i(0)\} \perp D_i | U_i$

and the only issue is that U_i is unobservable.

RDD as a local randomization

- Eckles et al. (2020) claim that it is possible to estimate the causal effect using the noisy measure Z_i.
- When the confounders are observable, all we need to do is to balance the confounders.
- ► Now the confounder is unobservable, hence we should balance a functional f of its noisy measure Z_i.
- Z_i contains information of U_i and we know their relationship.
- ► If f(Z_i) is balanced and f is properly chosen, we expect U_i to be balanced as well.
- ► They analyzed an example where U_i is the true level of CD4 count for HIV carriers and Z_i is the measured level.

References I

Altonji, Joseph G, and Rosa L Matzkin. 2005. "Cross Section and Panel Data Estimators for Nonseparable Models with Endogenous Regressors." *Econometrica* 73 (4): 1053–1102.
Calonico, Sebastian, Matias D Cattaneo, and Rocio Titiunik. 2014. "Robust Nonparametric Confidence Intervals for Regression-Discontinuity Designs." *Econometrica* 82 (6): 2295–2326.

Card, David, David S Lee, Zhuan Pei, and Andrea Weber. 2015. "Inference on Causal Effects in a Generalized Regression Kink Design." *Econometrica* 83 (6): 2453–83.

Cattaneo, Matias D, Brigham R Frandsen, and Rocio Titiunik. 2015. "Randomization Inference in the Regression Discontinuity Design: An Application to Party Advantages in the US Senate." *Journal of Causal Inference* 3 (1): 1–24.

References II

Cattaneo, Matias D, Luke Keele, Rocio Titiunik, and Gonzalo Vazquez-Bare. 2020. "Extrapolating Treatment Effects in Multi-Cutoff Regression Discontinuity Designs." *Journal of the American Statistical Association*, 1–12.

Cattaneo, Matias D, Rocio Titiunik, Gonzalo Vazquez-Bare, and Luke Keele. 2016. "Interpreting Regression Discontinuity Designs with Multiple Cutoffs." *The Journal of Politics* 78 (4): 1229–48.

Dell, Melissa, Nathan Lane, and Pablo Querubin. 2018. "The Historical State, Local Collective Action, and Economic Development in Vietnam." *Econometrica* 86 (6): 2083–2121.
Eckles, Dean, Nikolaos Ignatiadis, Stefan Wager, and Han Wu. 2020. "Noise-Induced Randomization in Regression Discontinuity Designs." *arXiv Preprint arXiv:2004.09458*.
Hausman, Catherine, and David S Rapson. 2018. "Regression Discontinuity in Time: Considerations for Empirical Applications." *Annual Review of Resource Economics* 10: 533–52.

References III

Keele, Luke J, and Rocio Titiunik. 2015. "Geographic Boundaries as Regression Discontinuities." *Political Analysis* 23 (1): 127–55.
Keele, Luke, Rocio Titiunik, and José R Zubizarreta. 2015.
"Enhancing a Geographic Regression Discontinuity Design Through Matching to Estimate the Effect of Ballot Initiatives on Voter Turnout." *Journal of the Royal Statistical Society. Series A (Statistics in Society)*, 223–39.

Kolesár, Michal, and Christoph Rothe. 2018. "Inference in Regression Discontinuity Designs with a Discrete Running Variable." American Economic Review 108 (8): 2277–2304.