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Review

I Under strong ignorability, we can combine various methods to
construct doubly robust estimators.

I The estimates they generate will be credible when one of the
nuisance parameters is correctly estimated.

I Examples include the AIPW estimator and the bias-correction
matching estimator.

I If we have a large number of covariates and are uncertain
about the set of confounders, machine learning algorithms can
be helpful.

I By combining penalization and cross-validation, they can
estimate the nuisance parameters accurately without knowing
what covariates to control for.

I To remove regularization bias from these algorithms, we need
estimators which satisfy Neyman orthogonality and apply
cross-fitting.
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Bad controls

I The validity of unconfoundedness is built upon the correct
choice of confounders.

I In theory, this should be decided by our substantive knowledge.
I Machine learning can assist us in this process.
I There are also some principles we should follow.
I We should not include any variable that can be affected by the

treatment (post-treatment variable).
I E.g., controlling today’s GDP per capita when studying the

impact of a historic event on public opinion.
I A post-treatment variable plays the role of a mediator.
I It may attenuate the effect generated by the treatment and

causes bias.

3 / 24



Post-treatment bias
I A post-treatment variable Si ∈ {0, 1} is a function of Di :

Si =
{

Si(1) if Di = 1,
Si(0) if Di = 0.

I A hypothetical example: Di indicates whether country i has a
high ethnic diversity, Si represents whether the country is
developed, and Yi is the frequency of civil conflicts.

I Suppose Di is randomly assigned, hence

Di ⊥ {Yi(0),Yi(1),Si(0),Si(1)}.

I Then,
E [Yi |Di = 1, Si = 1]− E [Yi |Di = 0,Si = 1]

=E [Yi(1)|Di = 1,Si(1) = 1]− E [Yi(0)|Di = 0,Si(0) = 1]
=E [Yi(1)|Si(1) = 1]− E [Yi(0)|Si(0) = 1].

I We are making comparisons between two different sets of
countries.
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Bias amplification

I Controlling for more covariates sometimes results in undesirable
consequences.

I Suppose Xi is significantly correlated with Di but has little
influence on Yi .

I Controlling for Xi reduces the variation of Di and increases the
estimate’s standard error.

I If Xi is positively correlated with Yi and an unobservable
confounder Ui is negatively correlated with Yi , then ignoring Xi
may offset the impact of Ui .

I Adding more control variables may cause bias amplification
(Middleton et al. 2016).
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Collider bias
I Why cannot GRE grade predict the achievement of PhD

students?
I Why aren’t smaller countries more likely to lose in wars?
I We are implicitly conditioning on a variable U, known as a

collider, in these analyses:

X1 → U ← X2.

I U is admission into the PhD program, or engagement in wars:
I Here X1 is GRE grade/size of the country, and X2 could be

research experience/number of allies.
I If you are admitted into the program with a low GRE grade,

your research experience might be better than average.
I If a small country is engaged in a war, it must be more

prepared than larger countries.
I Essentially, conditioning on U leads to a biased sample, hence

it is also known as the “sample selection bias.”
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Evaluate unconfoundedness

I It is impossible to directly test the assumption of
unconfoundedness as it involves the joint distribution of
(Yi(0),Yi(1)).

I But there are indirect ways to do so.
I The most common approach is to use placebo tests.
I Suppose there are some variables which are not supposed to be

affected by the treatment, we can estimate the effect on them
using the same estimator.

I Significant results would suggest the violation of the
assumption.

I Or we can estimate the effect generated by a variable which
should not affect the outcome.
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Evaluate unconfoundedness

I For example, if there is a new policy to encourage the school
attendance of female students, we should not find an effect on
male students.

I We should not find an effect on women who have finished
school either.

I Similarly, the school attendance rate of women may not be
affected by a policy that regulates gas price.

I The former is known as a placebo outcome, and the latter a
placebo treatment.

I Note that the placebo outcome should be a post-treatment
variable.

I Otherwise, you may want to control the variable in the analysis.
I A proper placebo test requires knowledge on the context we

study.
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Consequences of weak positivity

I In theory, positivity is satisfied if 0 < P(Di |Xi) < 1.
I But our methods will perform poorly if P(Di |Xi) can be very

close to 0 or 1.
I Khan and Tamer (2010) show that root-N consistent estimator

may not exist in this case.
I That’s why we usually write ε < P(Di |Xi) < 1− ε for some

0 < ε < 1.
I Rothe (2017) argues that the confidence intervals may have

poor coverage when ε is close to zero.
I It is necessary to examine the distribution of propensity scores

across the two groups.
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Sensitivity analysis

I The basic idea: how influential unobservable confounders have
to be to drive the estimate insignificant/zero?

I Remember that confounders must be correlated with both D
and Y .

I We can vary the magnitude of the two correlations and check
how the estimate would change.

I To find a benchmark, we calculate the correlations of some
observable confounders with D and Y .

I Methods differ in their assumptions on the DGP.
I It was motivated by Fisher’s questioning on the causal

relationship between smoking and lung cancer (Cornfield et al.
1959).

I Earlier works are built upon parametric assumptions
(Rosenbaum and Rubin 1983; Imbens 2003) but now we can do
better.

12 / 24



An omitted variable bias perspective
I Cinelli and Hazlett (2020) motivate their method from the

perspective of the omitted variable bias in regression.
I Suppose the true model is Yi = τDi + X′

iβ + γUi + εi .
I But U is unobservable to the researcher.
I The model we estimate is Yi = τsD + X′

iβs + νi .
I Let’s use V⊥X to denote the regression residual from

estimating variable V on X, then

τ̂s =Cov(D⊥X,Y⊥X)
Var(D⊥X)

=Cov(D⊥X, τ̂D⊥X + γ̂U⊥X)
Var(D⊥X)

=τ̂ + γ̂
Cov(D⊥X,U⊥X)

Var(D⊥X)
=τ̂ + γ̂δ̂
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An omitted variable bias perspective

I The difference between the correct estimate τ̂ and the actual
estimate τ̂s consists of two parts:
1. γ̂: the impact of the unobservable covariate on the outcome,
2. δ̂: the imbalance of the unobservable between the two groups.

I Essentially, the estimate is robust to model misspecification
when both Y and D can be largely explained by the observable
covariates.

I We can rely on R2 to measure the explanatory power of any
covariates.
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An omitted variable bias perspective

I Cinelli and Hazlett (2020) show that

|γ̂δ̂| =

√√√√R2
Y∼U|X,DR2

D∼U|X
1− R2

D∼U|X

(
sd(Y⊥X,D)
sd(D⊥X)

)

I Model misspecification is not dependent on the sample size.
I We vary the values of R2

Y∼U|X,D and R2
D∼U|X to see how the

estimate changes.
I It is straightforward to generalize the method to more

complicated models.
I E.g., correct vs. misspecified influence functions (Chernozhukov

et al. 2022).
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An omitted variable bias perspective: application

Partial R2 of confounder(s) with the treatment
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An omitted variable bias perspective: application
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An omitted variable bias perspective: application
## Sensitivity Analysis to Unobserved Confounding
##
## Model Formula: re78 ~ treat + age + education + black + hispanic + married +
## nodegree + re74 + re75 + u74 + u75
##
## Null hypothesis: q = 1 and reduce = TRUE
## -- This means we are considering biases that reduce the absolute value of the current estimate.
## -- The null hypothesis deemed problematic is H0:tau = 0
##
## Unadjusted Estimates of 'treat':
## Coef. estimate: 1670.71
## Standard Error: 641.1323
## t-value (H0:tau = 0): 2.6059
##
## Sensitivity Statistics:
## Partial R2 of treatment with outcome: 0.0154
## Robustness Value, q = 1: 0.1176
## Robustness Value, q = 1, alpha = 0.05: 0.0302
##
## Verbal interpretation of sensitivity statistics:
##
## -- Partial R2 of the treatment with the outcome: an extreme confounder (orthogonal to the covariates) that explains 100% of the residual variance of the outcome, would need to explain at least 1.54% of the residual variance of the treatment to fully account for the observed estimated effect.
##
## -- Robustness Value, q = 1: unobserved confounders (orthogonal to the covariates) that explain more than 11.76% of the residual variance of both the treatment and the outcome are strong enough to bring the point estimate to 0 (a bias of 100% of the original estimate). Conversely, unobserved confounders that do not explain more than 11.76% of the residual variance of both the treatment and the outcome are not strong enough to bring the point estimate to 0.
##
## -- Robustness Value, q = 1, alpha = 0.05: unobserved confounders (orthogonal to the covariates) that explain more than 3.02% of the residual variance of both the treatment and the outcome are strong enough to bring the estimate to a range where it is no longer 'statistically different' from 0 (a bias of 100% of the original estimate), at the significance level of alpha = 0.05. Conversely, unobserved confounders that do not explain more than 3.02% of the residual variance of both the treatment and the outcome are not strong enough to bring the estimate to a range where it is no longer 'statistically different' from 0, at the significance level of alpha = 0.05.
##
## Bounds on omitted variable bias:
##
## --The table below shows the maximum strength of unobserved confounders with association with the treatment and the outcome bounded by a multiple of the observed explanatory power of the chosen benchmark covariate(s).
##
## Bound Label R2dz.x R2yz.dx Treatment Adjusted Estimate Adjusted Se Adjusted T
## 5x education 0.0154 0.0356 treat 1355.25 635.2548 2.1334
## Adjusted Lower CI Adjusted Upper CI
## 106.6831 2603.816
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An omitted variable bias perspective: application

Partial R2 of confounder(s) with the treatment
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An omitted variable bias perspective: application
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An omitted variable bias perspective: application

Partial R2 of confounder(s) with the treatment

P
ar

tia
l R

2  o
f c

on
fo

un
de

r(
s)

 w
ith

 th
e 

ou
tc

om
e

 −3500 

 −3000 

 −2500 

 −2000 

 −1500 

 −1000 

 −500 

 500 

 1000 

 1500 
 2000  2500 

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

 0 

Unadjusted
(2700)

5x education
(2612.541)

21 / 24



An omitted variable bias perspective: application
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