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Review

We can examine the heterogeneity in treatment effects by
estimating the CATE: 7(x) = E[r;|X = x].

With these estimates, we can design assignment mechanisms
that maximize social welfare or generalize our results to other
contexts.

When X take a few discrete values, the CATE can be estimated
by conditioning on units with the same covariates values.

It is equivalent to fitting a saturated interactive regression
model.

Relying on the interactive regression model leads to biases if
the CATE is not linear in X.

One solution is to use the binscatter estimator.
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From bins to kernels

» Again, let's first assume that 7; is known.
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Problems with the binscatter estimator

» The binscatter estimator requires researchers to specify the
bins.

» We usually assume that the bins have the same width (known
as the bandwidth) and are equidistantly distributed over the
support of X.

> Detecting the optimal partition of X is computationally
challenging.

> 7 is the same for units in the same bin.

» This may not be very accurate if the variation is large within a
specific bin.
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The kernel estimator

» Naturally, we can create a bin around each x and estimate 7(x)
with the average of 7; in this bin.
» We randomly pick a bandwidth of 8.
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The kernel estimator

» This is known as the kernel estimator with the uniform kernel.

» Points closer to x provide more information about 7(x) hence
might be up-weighted.

> It leads to other choices of the kernel:
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The kernel estimator

» We usually denote the kernel function as K

| Xi—x]|
)

> Its value at X; is determined by x and the bandwidth h.
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For the uniform kernel with a bandwidth of 8,
X,'—X o X,'—X

K(l - I)_l{l - |§1}.

For the triangular kernel with a bandwidth of 8,
Xi—x|\ __ Xi—x Xi—x

(150) 23 <) 1 - )

Note that the kernel function’s value is always between 0 and 1.

Its integral over the support of X equals h.

Hence, we can see the kernel as weights for the units.
Different kernels weigh the units differently.

For the triangular kernel with a bandwidth of 8, units with
X; = x has a weight of 1, while those with X; = x 4+ 8 has a
weight of 0.
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The kernel estimator

> In large sample, the choice of the kernel should not matter.
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The kernel estimator

> But the bandwidth is crucial.
» A small bandwidth leads to a smaller bias but a larger variance
(overfitting).
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The kernel estimator

> But the bandwidth is crucial.
> A larger bandwidth leads to a smaller variance but a larger bias
(underfitting).
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Kernel regression

» We can make the estimation more precise by replacing the
average in each bin with the regression prediction (the “local
regression”).
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Kernel regression
» From the example, we can see that we are still running
regression, with

1 X
1 X
X=1. .
1 Xy
» The difference is that we are weighting each unit / with the
kernel K (L;XI :
> Let's denote the matrix of kernel weights as
| X1 —x|
K (25 )(3 0
0 K(Ped) 0

0 0 k()
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Kernel regression

» Now, the minimization problem becomes
ﬁx—argmmZKCX ‘)(Y,-—X’.ﬁx)z.
8 h '

» We can show that the solution will be
By = (X'WX)LH(X'WY).

» Therefore, the kernel regression estimator is essentially a
weighted least squares (WLS) estimator.

» But j represents estimated coefficients for the local regression
rather than those for the global regression.

> We predict 7(x) with 7 = (1, x)x.

» The variance of BAX takes the familiar sandwich form.
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Kernel regression
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Kernel regression

» We can make the model more complicated by setting

1 Xg x¢ - X
S
1 Xy X3 - XK

» The WLS estimator has the same form but the approximation
will be more precise.

> We refer to it as the local polynomial regression.

> Kernel regression can be extended to the multivariate case with
the weight K <|X1:hl><1\) K <|X2:hzx2|> K <7|XP;,PX1|>.

» But selecting the optimal bandwidth will be an impossible
mission (curse of dimensionality).

» Machine learning is more effective in this case.
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Kernel regression for estimating the CATE

» We have been assuming that 7; is known.
» When it is not, we can fit a local regression with

1 D1 X1—X D1>I<(X1—X)
1 D2 X2—X D2*(X2—X)
X=1. . : :
1 DN XN—X DN*(XN—X)

» The minimization problem becomes

N
arg min Z <|Xi h_ X|> (Y;i—7D;—B(Xi—x)—0D;*(Xi—x))>.

7-71876

i=1

» 7 is our estimate of 7(x).
> Repeat this process for each x, we have an estimated curve

7(x).
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Kernel regression for estimating the CATE
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Kernel regression for estimating the CATE
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Bandwidth selection
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For simplicity, let's return to the scenario where 7; is known.
Different bandwidths lead to different estimate 74(x).

We can find the optimal bandwidth h* through cross-validation.

Step 1, set a sequence of possible bandwidths,

he {hl, ho, ..., hH} (e.g., {2, 4, ... ,20}).

Step 2, randomly divide the sample into K folds (usually 5 or
10), denoted as {Z,}X_;.

Step 3, for any unit i € Z, and any h, fit the kernel regression
model and generate the predicted value 7,(X;) using units from
Uk/;ékzk"

Step 4, calculate the mean squared error (MSE):

1Y PV
N;(Ti—ﬂ»( i)

Step 5, repeat Steps 1-4 for each h and find A* that minimizes
the MSE.
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Bandwidth selection (*)

## The optimal bandwidth is 4
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Bandwidth selection (*)

>

» Note that for i € Z and j € Uk/;éka/, g; is independent to ¢;.

In the cross-validation algorithm, we call Zj the test set and
Uk/#ka/ the training set.

We fit the model on the latter and examine its performance on
the former.

Define e; = 7; — 7(X;), which captures variation in 7; that
cannot be explained by 7(X;) (the irreducible error).

We can think 7(X;) as the signal and ¢; the noise.

Therefore, we have
E [(7i = #a(X0))?| =E [(7(X)) + & — #(X)))?]
=E [(7(X;) = #a(X0))?] + E[£7]

With cross-validation, the MSE measures how well 7,(X;)
approximates 7(X;).
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Bandwidth selection (*)

» Then,

E |(r(X) — #(X)))?]
=E[7%(X) — 27(Xi)7n(Xi) + 7 (X))]
=72(X;) = 27(X))E[#s(X0)] + E[7(X0)]
=72(Xi) = 27(X:) E[P(X)] + (E[7n(X)])?
+ E[#(X0)] — (E[#a(X)])?
= (7(X;) — E[#(X)])* + Var[#4(X))]
» The MSE equals the square of the bias plus the variance of

Th(Xi).
> It is typically a U-shaped function of h.

> h* achieves the optimal trade-off between bias and variance.
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Bandwidth selection (*)

5 — MsE
---- Bias
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Adaptive kernels
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In kernel regression, we select one bandwidth for all units.

But it makes more sense to allow the bandwidth to vary.
Classic methods can hardly do this.

But we have machine learning now!

One example is random forest, which can be interpreted as an
adaptive kernel estimator (Athey et al. 2019).

We randomly draw sub-samples from data and generate K bins
to minimize the SSR.

The collection of the K bins is known as a tree and each bin is
a leave.

We repeat this process to grow 1,000 trees, which compose a
forest.

For any point x, the weight assigned to observation i equals

the proportion of trees in which X; and x are in the same leave.
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