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Review

I We can examine the heterogeneity in treatment effects by
estimating the CATE: τ(x) = E [τi |X = x].

I With these estimates, we can design assignment mechanisms
that maximize social welfare or generalize our results to other
contexts.

I When X take a few discrete values, the CATE can be estimated
by conditioning on units with the same covariates values.

I It is equivalent to fitting a saturated interactive regression
model.

I Relying on the interactive regression model leads to biases if
the CATE is not linear in X.

I One solution is to use the binscatter estimator.
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From bins to kernels
I Again, let’s first assume that τi is known.
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Problems with the binscatter estimator

I The binscatter estimator requires researchers to specify the
bins.

I We usually assume that the bins have the same width (known
as the bandwidth) and are equidistantly distributed over the
support of X .

I Detecting the optimal partition of X is computationally
challenging.

I τ̂ is the same for units in the same bin.
I This may not be very accurate if the variation is large within a

specific bin.
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The kernel estimator

I Naturally, we can create a bin around each x and estimate τ(x)
with the average of τi in this bin.

I We randomly pick a bandwidth of 8.
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The kernel estimator

I Naturally, we can create bins around each x and estimate τ(x)
with the average of τi in this bin.

I We randomly pick a bandwidth of 8.
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The kernel estimator

I Naturally, we can create bins around each x and estimate τ(x)
with the average of τi in this bin.

I We randomly pick a bandwidth of 8.
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The kernel estimator

I This is known as the kernel estimator with the uniform kernel.
I Points closer to x provide more information about τ(x) hence

might be up-weighted.
I It leads to other choices of the kernel:
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The kernel estimator

I We usually denote the kernel function as K
(
|Xi−x |

h

)
.

I Its value at Xi is determined by x and the bandwidth h.
I For the uniform kernel with a bandwidth of 8,

K
(
|Xi−x |

h

)
= 1

{
|Xi−x |

8 ≤ 1
}
.

I For the triangular kernel with a bandwidth of 8,
K
(
|Xi−x |

h

)
= 1

{
|Xi−x |

8 ≤ 1
} [

1− |Xi−x |
8

]
.

I Note that the kernel function’s value is always between 0 and 1.
I Its integral over the support of X equals h.
I Hence, we can see the kernel as weights for the units.
I Different kernels weigh the units differently.
I For the triangular kernel with a bandwidth of 8, units with

Xi = x has a weight of 1, while those with Xi = x + 8 has a
weight of 0.
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The kernel estimator

I In large sample, the choice of the kernel should not matter.
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The kernel estimator

I But the bandwidth is crucial.
I A small bandwidth leads to a smaller bias but a larger variance

(overfitting).
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The kernel estimator

I But the bandwidth is crucial.
I A larger bandwidth leads to a smaller variance but a larger bias

(underfitting).
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Kernel regression

I We can make the estimation more precise by replacing the
average in each bin with the regression prediction (the “local
regression”).
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Kernel regression

I We can make the estimation more precise by replacing the
average in each bin with the regression prediction (the “local
regression”).
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Kernel regression
I From the example, we can see that we are still running

regression, with

X =


1 X1
1 X2
...

...
1 XN

 .
I The difference is that we are weighting each unit i with the

kernel K
(
|Xi−x |

h

)
.

I Let’s denote the matrix of kernel weights as

W =


K
(
|X1−x |

h

)
0 . . . 0

0 K
(
|X2−x |

h

)
. . . 0

...
... . . . ...

0 0 . . . K
(
|XN−x |

h

)

 .
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Kernel regression

I Now, the minimization problem becomes

β̂x = argmin
β

N∑
i=1

K
( |Xi − x |

h

)
(Yi − X′iβx )2.

I We can show that the solution will be

β̂x = (X′WX)−1(X′WY).

I Therefore, the kernel regression estimator is essentially a
weighted least squares (WLS) estimator.

I But β̂x represents estimated coefficients for the local regression
rather than those for the global regression.

I We predict τ(x) with τ̂ = (1, x)β̂x .
I The variance of β̂x takes the familiar sandwich form.
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Kernel regression
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Kernel regression

I We can make the model more complicated by setting

X =


1 X1 X 2

1 · · · XK
1

1 X2 X 2
2 · · · XK

2
...

...
...

...
...

1 XN X 2
N · · · XK

N

 .
I The WLS estimator has the same form but the approximation

will be more precise.
I We refer to it as the local polynomial regression.
I Kernel regression can be extended to the multivariate case with

the weight K
(
|X1i−x1|

h1

)
K
(
|X2i−x2|

h2

)
· · ·K

(
|XPi−x1|

hP

)
.

I But selecting the optimal bandwidth will be an impossible
mission (curse of dimensionality).

I Machine learning is more effective in this case.
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Kernel regression for estimating the CATE
I We have been assuming that τi is known.
I When it is not, we can fit a local regression with

X =


1 D1 X1 − x D1 ∗ (X1 − x)
1 D2 X2 − x D2 ∗ (X2 − x)
...

...
...

...
1 DN XN − x DN ∗ (XN − x)

 .
I The minimization problem becomes

arg min
τ,β,δ

N∑
i=1

K
( |Xi − x |

h

)
(Yi−τDi−β(Xi−x)−δDi∗(Xi−x))2.

I τ̂ is our estimate of τ(x).
I Repeat this process for each x , we have an estimated curve
τ̂(x).
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Kernel regression for estimating the CATE
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Kernel regression for estimating the CATE
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Bandwidth selection
I For simplicity, let’s return to the scenario where τi is known.
I Different bandwidths lead to different estimate τ̂h(x).
I We can find the optimal bandwidth h∗ through cross-validation.
I Step 1, set a sequence of possible bandwidths,

h ∈ {h1, h2, . . . , hH} (e.g., {2, 4, . . . , 20}).
I Step 2, randomly divide the sample into K folds (usually 5 or

10), denoted as {Ik}Kk=1.
I Step 3, for any unit i ∈ Ik and any h, fit the kernel regression

model and generate the predicted value τ̂h(Xi) using units from
∪k′ 6=kIk′ .

I Step 4, calculate the mean squared error (MSE):

1
N

N∑
i=1

(τi − τ̂h(Xi))2

I Step 5, repeat Steps 1-4 for each h and find h∗ that minimizes
the MSE.
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Bandwidth selection (*)

## The optimal bandwidth is 4
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Bandwidth selection (*)
I In the cross-validation algorithm, we call Ik the test set and
∪k′ 6=kIk′ the training set.

I We fit the model on the latter and examine its performance on
the former.

I Define εi = τi − τ(Xi), which captures variation in τi that
cannot be explained by τ(Xi) (the irreducible error).

I We can think τ(Xi) as the signal and εi the noise.
I Note that for i ∈ Ik and j ∈ ∪k′ 6=kIk′ , εi is independent to εj .
I Therefore, we have

E
[
(τi − τ̂h(Xi))2

]
=E

[
(τ(Xi) + εi − τ̂h(Xi))2

]
=E

[
(τ(Xi)− τ̂h(Xi))2

]
+ E [ε2

i ]

I With cross-validation, the MSE measures how well τ̂h(Xi)
approximates τ(Xi).
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Bandwidth selection (*)

I Then,

E
[
(τ(Xi)− τ̂h(Xi))2

]
=E [τ2(Xi)− 2τ(Xi)τ̂h(Xi) + τ̂2

h (Xi)]
=τ2(Xi)− 2τ(Xi)E [τ̂h(Xi)] + E [τ̂2

h (Xi)]
=τ2(Xi)− 2τ(Xi)E [τ̂h(Xi)] + (E [τ̂h(Xi)])2

+ E [τ̂2
h (Xi)]− (E [τ̂h(Xi)])2

= (τ(Xi)− E [τ̂h(Xi)])2 + Var [τ̂h(Xi)]

I The MSE equals the square of the bias plus the variance of
τ̂h(Xi).

I It is typically a U-shaped function of h.
I h∗ achieves the optimal trade-off between bias and variance.
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Bandwidth selection (*)
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Adaptive kernels

I In kernel regression, we select one bandwidth for all units.
I But it makes more sense to allow the bandwidth to vary.
I Classic methods can hardly do this.
I But we have machine learning now!
I One example is random forest, which can be interpreted as an

adaptive kernel estimator (Athey et al. 2019).
I We randomly draw sub-samples from data and generate K bins

to minimize the SSR.
I The collection of the K bins is known as a tree and each bin is

a leave.
I We repeat this process to grow 1, 000 trees, which compose a

forest.
I For any point x , the weight assigned to observation i equals

the proportion of trees in which Xi and x are in the same leave.
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