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Review

I We have learned four methods to deal with confounders under
strong ignorability.

I Matching, weighting, regression, and balancing.
I NN matching requires no extra restrictions but introduces a

bias term and is inefficient.
I PS matching and IPW require accurate estimates of the

propensity scores.
I They are sensitive to the violation of positivity.
I Regression is built upon the correct specification of the

response surface.
I Balancing is valid when either the propensity score or the

response surface satisfies a certain form.
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Combine estimators

I We can actually combine previously mentioned estimators for a
better performance.

I The combined estimator is usually more efficient.
I It may also possess the property we call “double robustness”

(Robins, Rotnitzky, and Zhao 1994).
I Remember that different methods impose different structural

restrictions, which may not hold in practice.
I The doubly robust estimators produce credible results when

structural restrictions hold for either method.
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The AIPW estimator

I A classic example of doubly robust estimators is the augmented
IPW (AIPW) estimator:

τ̂AIPW = 1
N

N∑
i=1

[Di (Yi − m̂1(Xi ))
ĝ(Xi )

− (1− Di )(Yi − m̂0(Xi ))
1− ĝ(Xi )

]

+ 1
N

N∑
i=1

[m̂1(Xi )− m̂0(Xi )] ,

where ĝ(Xi ) is the estimated propensity score, m̂1(Xi ) is an
estimate for E [Yi |Di = 1,Xi ] and m̂0(Xi ) is an estimate for
E [Yi |Di = 0,Xi ].

I For example, we can assume that g(Xi ) = eX′
i β

1+eX′
i β
,

m0(Xi ) = X′
iβ0, and m1(Xi ) = X′

iβ1.
I Each model has its own structural restrictions.
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The AIPW estimator

I Suppose the regression models are correctly specified and the
propensity score model is not, then
E
[

1
N
∑N

i=1 [m̂1(Xi )− m̂0(Xi )]
]

= τ .
I Moreover, ε̂i = Yi − m̂Di (Xi ) is a random noise such that

E [ε̂i |Xi ]→ 0.
I Now,

E [τ̂AIPW ] = 1
N

N∑
i=1

E
[ Di ε̂i

ĝ(Xi )
− (1− Di )ε̂i

1− ĝ(Xi )

]

+ 1
N

N∑
i=1

E [m̂1(Xi )− m̂0(Xi )]

→0 + τ = τ

I This is true even when ĝ(Xi ) 6→ g(Xi ).
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The AIPW estimator
I Suppose it is the other way around, we can see that the

estimator is equivalent to

τ̂AIPW = 1
N

N∑
i=1

[ DiYi
ĝ(Xi )

− (1− Di )Yi
1− ĝ(Xi )

]

− 1
N

N∑
i=1

[(Di − ĝ(Xi ))m̂1(Xi )
ĝ(Xi )

− (Di − ĝ(Xi ))m̂0(Xi ))
1− ĝ(Xi )

]
I The first part is just the IPW estimator thus consistent.
I Since ĝ(Xi )→ g(Xi ) and E [ν̂i |Xi ] = E [Di − g(Xi )|Xi ] = 0,

1
N

N∑
i=1

E
[
ν̂im̂1(Xi )

ĝ(Xi )
− ν̂im̂0(Xi ))

1− ĝ(Xi )

]
→ 0.

I This is true even when m̂Di (Xi ) 6→ mDi (Xi ).
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The AIPW estimator
I When either model is correctly specified, τ̂AIPW is consistent

for τ .
I When both are correctly specified, τ̂AIPW reaches the efficiency

bound proved by Hahn (1998).
I To estimate the variance of τ̂AIPW , note that
τ̂AIPW = 1

N
∑N

i=1 Ii , where

Ii =Di (Yi − m̂1(Xi ))
ĝ(Xi )

− (1− Di )(Yi − m̂0(Xi ))
1− ĝ(Xi )

− [m̂1(Xi )− m̂0(Xi )]

I Therefore, V̂ar [τ̂AIPW ] = 1
N2
∑N

i=1(Ii − τ̂AIPW )2.
I Ii represents the (efficient) influence function for τ̂AIPW .
I The variance can be obtained by regression Ii on 1.
I It does not account for the uncertainties from estimating the

nuisance parameters either.
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The AIPW estimator: simulation
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## The SATE is 3.09747
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The AIPW estimator: simulation

## The SATE is 3.097

## Estimate from the right regression model is 3.162

## Estimate from the right ipw estimator is 3.115

## Estimate from the wrong regression model is 3.602

## Estimate from the wrong ipw estimator is 4.213

## Estimate from the doubly robust estimator
## with wrong regression model is 3.111

## Estimate from the doubly robust estimator
## with wrong pscore model is 3.162

## Estimate from the doubly robust estimator
## with correct models is 3.107
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Bias correction in matching
I Lin, Ding, and Han (2023) proved that the bias correction

estimator proposed by Abadie and Imbens (2011) is also doubly
robust when M grows with N.

I We first estimate m̂1(Xi ) and m̂0(Xi ).
I Then, for each treated observation i , we have

Ŷ bc
i (1) =

{
Yi Di = 1
1
M
∑

j∈JM(i) (Yj + m̂0(Xi )− m̂0(Xj)) Di = 0,

Ŷ bc
i (0) =

{ 1
M
∑

j∈JM(i) (Yj + m̂1(Xi )− m̂1(Xj)) Di = 1
Yi Di = 0,

I Similarly, the ATE estimate is

τ̂bc
M = 1

N

N∑
i=1

(Ŷ bc
i (1)− Ŷ bc

i (0)).
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Bias correction in matching
I They show that

τ̂bc
M = 1

N

N∑
i=1

(m̂1(Xi )− m̂0(Xi ))

+ 1
N

N∑
i=1

(2Di − 1)
(
1 + KM(i)

M

)
ε̂i

I As M →∞, N0
N1

KM(i)
M → fX|D=1(Xi )

fX|D=0(Xi ) , the density ratio at Xi .
I Consequently,

1 + KM(i)
M →


1

g(Xi ) Di = 1
1

1−g(Xi ) Di = 0,
.

I It approximates the AIPW estimator.
I They suggest that we should choose M = N2/(2+κ) based on

simulation evidence.
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Bias correction in matching: application
##
## Estimate... 2295
## AI SE...... 1321.4
## T-stat..... 1.7368
## p.val...... 0.082416
##
## Original number of observations.............. 2675
## Original number of treated obs............... 185
## Matched number of observations............... 185
## Matched number of observations (unweighted). 932

##
## Estimate... 1468.7
## AI SE...... 1385.5
## T-stat..... 1.06
## p.val...... 0.28914
##
## Original number of observations.............. 2675
## Original number of treated obs............... 185
## Matched number of observations............... 185
## Matched number of observations (unweighted). 932
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Double robustness in regression

I Double robustness is built upon a simple idea from regression
analysis.

I Consider the regression model

Yi = τDi + X′iβ + εi .

I The OLS estimate τ̂OLS is consistent when εi is uncorrelated
with either Yi or Di .

I Recall that the FWL theorem suggests

τ̂OLS = (ν̂ ′ν̂)−1(ν̂ ′ε̂),

where ν̂ = QD, ε̂ = QY, and Q = I− X(X′X)−1X′.
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Double robustness in regression

I Regressing Di on Xi implies the following regression model:

Di = X′
iδ + νi .

I We can show that

τ̂OLS = τ +
(
ν ′Qν

)−1 (ν ′Qε),

I τ̂OLS → τ when either ν ′Q→ 0 or Qε→ 0.
I The former holds when E [νi |Xi ] = 0 and the latter holds when

E [εi |Xi ] = 0.
I The correct specification of either model can ensure the

consistency of τ̂OLS .
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Summary
I Doubly robust estimators are robust to model misspecification

not to the violation of identification assumptions.
I If strong ignorability is not satisfied, doubly robust estimators

will be inconsistent.
I Therefore, both parts of the estimator should be functions of

the same set of covariates.
I You cannot use the response surface to control for Xi and the

propensity score model to control for Zi .
I Nor can we expect the estimator to have negligible bias when

both models are slightly biased.
I Positivity is essential for these estimators to work.
I But how can we ensure that strong ignorability holds?
I Unconfoundedness seems more plausible when we condition on

more variables.
I The opposite could be true for positivity! (D’Amour et al.

2021)
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Why machine learning?

I Now, let’s assume that strong ignorability holds conditional on
a large set of confounders.

I The dimensionality of the confounders can be even larger than
the sample size, P � N.

I E.g., high-order terms and all the interaction terms of some
covariates.

I If we know the values of the nuisance parameters, all the
methods can still be applied.

I But estimating the nuisance parameters becomes really
challenging.

I How do you run regression on 200 covariates when N = 100?
I This is where machine learning (ML) can be useful.
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Basic ideas of machine learning

I We are interested in the relationship between Yi and Xi , where
the dimensionality of Xi could be high:

Yi = f (Xi ) + εi .

I The goal is to find an estimate f̂ (·) such that
E
[
f̂ (Xi )− f (Xi )

]2
is minimized.

I Compared with conventional approaches, machine learning
algorithms have two unique features: penalization and
cross-validation.

I They allow us to select variables that have a strong prediction
power of Yi .
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Basic ideas of machine learning

I In regression, we try to minimize the SSR:

f̂ = argmin
f

N∑
i=1

[Yi − f (Xi )]2.

I In machine learning, we augment the objective function by
adding a penalty term:

f̂ = argmin
f

N∑
i=1

[Yi − f (Xi )]2 + φλ(f ),

where φλ(f ) measures the complexity of our estimate.
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Basic ideas of machine learning

I For example, the famous least absolute shrinkage and selection
operator (LASSO) can be estimated from

β̂ = argmin
β

N∑
i=1

(Yi − X′iβ)2 + λ
P∑

p=2
|βp|.

I The first part is the familiar SSR, but we penalize models in
which many variables have a non-zero coefficient.

I Consequently, the coefficient of many variables equals 0 in β̂.
I The magnitude of λ decides the severity of penalty.
I If λ = 0, LASSO becomes linear regression.
I If λ =∞, all the coefficients are zero and we predict Yi with

Ȳ .
I It controls the bias-variance trade-off and should be selected

via cross-validation.
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Basic ideas of machine learning

I Similar to bandwidth selection, we select a sequence of possible
values for λ.

I Then, we randomly split the sample into the training set and
the test set.

I For each λ, we solve β̂λ on the training set.
I We test the performance of the linear model on the test set

with:
ψ(λ) = 1

|i ∈ Stest |
∑

i∈Stest

(Yi − X′i β̂λ)2.

I The optimal choice, λ∗, minimizes ψ(λ).
I Finally, we solve β̂∗ using the entire sample and λ∗.
I LASSO works when we do not know which variables among a

large set of candidates actually affect Yi .

20 / 28



Basic ideas of machine learning
I Machine learning algorithms are designed to maximize our

ability to make predictions.
I Should we just let the algorithms predict the relationship

between Yi and (Di ,Xi ) for us and consider problem as solved?
I Not that simple!
I Even the most advanced AI cannot do causal inference, just

like androids do not dream of electric sheep.
I They are selecting predictors rather than confounders.
I Variables that are strongly correlated with Di but weakly

correlated with Yi may not be selected by LASSO
(Chernozhukov, Hansen, and Spindler 2015).

I We should use ML algorithms to approximate the nuisance
parameters.

I They are very useful when we don’t know which variables from
a large set of candidates are actually confounders.

I Yet some modifications of our basic methods are still necessary.
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ML in causal inference
I A byproduct of penalization is slow convergence rate, which

causes biases in estimation.
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ML in causal inference

I Fortunately, this problem is less severe for doubly robust
estimators.

I When we combine them with cross-fitting, biases caused by
regularization can be negligible.

I This is an idea known as “double machine learning” proposed
by Chernozhukov et al. (2017).

I For the AIPW estimator, we randomly split the sample into K
folds: {Ik}Kk=1.

I For i ∈ Ik , we apply ML algorithms to estimate all the nuisance
parameters, (g(·),m0(·),m1(·)), using units in ∪l 6=k Il .

I Then, we predict the values of the nuisance parameters for i ,
(ĝ(Xi ), m̂0(Xi ), m̂1(Xi )), and plug them into the AIPW
estimator.

I We still use all the units hence do not lose any efficiency.
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ML in causal inference

## The SATE is 3.112

## Estimate from the naive ML estimator is 3.608

## Estimate from the DML estimator (no CF) is 3.347

## Estimate from the DML estimator is 3.354
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ML in causal inference
I Cross-fitting is similar to cross-validation we saw before.
I It ensures that the irreducible error in Ik is independent to that

from ∪l 6=k Il (no “double dipping”).
I (ĝ(·), m̂0(·), m̂1(·)) behave as if they are known functions for

units in Ik .
I The AIPW estimator satisfies a property we call “Neyman

orthogonality.”
I It means that the ATE estimate is insensitive/orthogonal to

bias from estimating the nuisance parameters.
I For the AIPW estimator under cross-fitting, the regularization

bias is bounded by

||ĝ − g || ∗ ||m̂D −mD||

I If the convergence rate for both estimators is higher than N1/4

(true for most ML algorithms), the bias will be negligible in
large samples.
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Summary

I ML algorithms are designed for prediction rather than causal
inference.

I They rely on penalization and cross-validation to find models
with the highest prediction power.

I We can use them to estimate the nuisance parameters when
the number of potential confounders is large.

I To eliminate bias from regularization, we need 1) estimators
that satisfy Neyman orthogonality, and 2) cross-fitting.

I The AIPW estimator with nuisance parameters estimated by
ML algorithms is root-N consistent and asymptotically normal.

I We can estimate its variance using the influence function.
I There are many other approaches to incorporate ML into

causal inference.
I A fast-growing field in causal inference.
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