# Doubly Robust Estimators 

Ye Wang<br>University of North Carolina at Chapel Hill

Linear Methods in Causal Inference POLI784

## Review

- We have learned four methods to deal with confounders under strong ignorability.
- Matching, weighting, regression, and balancing.
- NN matching requires no extra restrictions but introduces a bias term and is inefficient.
- PS matching and IPW require accurate estimates of the propensity scores.
- They are sensitive to the violation of positivity.
- Regression is built upon the correct specification of the response surface.
- Balancing is valid when either the propensity score or the response surface satisfies a certain form.


## Combine estimators

- We can actually combine previously mentioned estimators for a better performance.
- The combined estimator is usually more efficient.
- It may also possess the property we call "double robustness" (Robins, Rotnitzky, and Zhao 1994).
- Remember that different methods impose different structural restrictions, which may not hold in practice.
- The doubly robust estimators produce credible results when structural restrictions hold for either method.


## The AIPW estimator

- A classic example of doubly robust estimators is the augmented IPW (AIPW) estimator:

$$
\begin{aligned}
\hat{\tau}_{\text {AIPW }}= & \frac{1}{N} \sum_{i=1}^{N}\left[\frac{D_{i}\left(Y_{i}-\hat{m}_{1}\left(\mathbf{X}_{i}\right)\right)}{\hat{g}\left(\mathbf{X}_{i}\right)}-\frac{\left(1-D_{i}\right)\left(Y_{i}-\hat{m}_{0}\left(\mathbf{X}_{i}\right)\right)}{1-\hat{g}\left(\mathbf{X}_{i}\right)}\right] \\
& +\frac{1}{N} \sum_{i=1}^{N}\left[\hat{m}_{1}\left(\mathbf{X}_{i}\right)-\hat{m}_{0}\left(\mathbf{X}_{i}\right)\right]
\end{aligned}
$$

where $\hat{g}\left(\mathbf{X}_{i}\right)$ is the estimated propensity score, $\hat{m}_{1}\left(\mathbf{X}_{i}\right)$ is an estimate for $E\left[Y_{i} \mid D_{i}=1, \mathbf{X}_{i}\right]$ and $\hat{m}_{0}\left(\mathbf{X}_{i}\right)$ is an estimate for $E\left[Y_{i} \mid D_{i}=0, \mathbf{X}_{i}\right]$.

- For example, we can assume that $g\left(\mathbf{X}_{i}\right)=\frac{e^{\mathbf{X}_{i}^{\prime} \beta}}{1+e^{\mathbf{x}_{i}^{\prime}}}$, $m_{0}\left(\mathbf{X}_{i}\right)=\mathbf{X}_{i}^{\prime} \beta_{0}$, and $m_{1}\left(\mathbf{X}_{i}\right)=\mathbf{X}_{i}^{\prime} \beta_{1}$.
- Each model has its own structural restrictions.


## The AIPW estimator

- Suppose the regression models are correctly specified and the propensity score model is not, then
$E\left[\frac{1}{N} \sum_{i=1}^{N}\left[\hat{m}_{1}\left(\mathbf{X}_{i}\right)-\hat{m}_{0}\left(\mathbf{X}_{i}\right)\right]\right]=\tau$.
- Moreover, $\hat{\varepsilon}_{i}=Y_{i}-\hat{m}_{D_{i}}\left(\mathbf{X}_{i}\right)$ is a random noise such that $E\left[\hat{\varepsilon}_{i} \mid \mathbf{X}_{i}\right] \rightarrow 0$.
- Now,

$$
\begin{aligned}
E\left[\hat{\tau}_{A I P W}\right]= & \frac{1}{N} \sum_{i=1}^{N} E\left[\frac{D_{i} \hat{\varepsilon}_{i}}{\hat{g}\left(\mathbf{X}_{i}\right)}-\frac{\left(1-D_{i}\right) \hat{\varepsilon}_{i}}{1-\hat{g}\left(\mathbf{X}_{i}\right)}\right] \\
& +\frac{1}{N} \sum_{i=1}^{N} E\left[\hat{m}_{1}\left(\mathbf{X}_{i}\right)-\hat{m}_{0}\left(\mathbf{X}_{i}\right)\right] \\
\rightarrow 0 & +\tau=\tau
\end{aligned}
$$

- This is true even when $\hat{g}\left(\mathbf{X}_{i}\right) \nrightarrow g\left(\mathbf{X}_{i}\right)$.


## The AIPW estimator

- Suppose it is the other way around, we can see that the estimator is equivalent to

$$
\begin{aligned}
\hat{\tau}_{\text {AIPW }}= & \frac{1}{N} \sum_{i=1}^{N}\left[\frac{D_{i} Y_{i}}{\hat{g}\left(\mathbf{X}_{i}\right)}-\frac{\left(1-D_{i}\right) Y_{i}}{1-\hat{g}\left(\mathbf{X}_{i}\right)}\right] \\
& -\frac{1}{N} \sum_{i=1}^{N}\left[\frac{\left(D_{i}-\hat{g}\left(\mathbf{X}_{i}\right)\right) \hat{m}_{1}\left(\mathbf{X}_{i}\right)}{\hat{g}\left(\mathbf{X}_{i}\right)}-\frac{\left.\left(D_{i}-\hat{g}\left(\mathbf{X}_{i}\right)\right) \hat{m}_{0}\left(\mathbf{X}_{i}\right)\right)}{1-\hat{g}\left(\mathbf{X}_{i}\right)}\right]
\end{aligned}
$$

- The first part is just the IPW estimator thus consistent.
- Since $\hat{g}\left(\mathbf{X}_{i}\right) \rightarrow g\left(\mathbf{X}_{i}\right)$ and $E\left[\hat{\nu}_{i} \mid \mathbf{X}_{i}\right]=E\left[D_{i}-g\left(\mathbf{X}_{i}\right) \mid \mathbf{X}_{i}\right]=0$,

$$
\frac{1}{N} \sum_{i=1}^{N} E\left[\frac{\hat{\nu}_{i} \hat{m}_{1}\left(\mathbf{X}_{i}\right)}{\hat{g}\left(\mathbf{X}_{i}\right)}-\frac{\left.\hat{\nu}_{i} \hat{m}_{0}\left(\mathbf{X}_{i}\right)\right)}{1-\hat{g}\left(\mathbf{X}_{i}\right)}\right] \rightarrow 0
$$

- This is true even when $\hat{m}_{D_{i}}\left(\mathbf{X}_{i}\right) \nrightarrow m_{D_{i}}\left(\mathbf{X}_{i}\right)$.


## The AIPW estimator

- When either model is correctly specified, $\hat{\tau}_{\text {AIPW }}$ is consistent for $\tau$.
- When both are correctly specified, $\hat{\tau}_{\text {AIPW }}$ reaches the efficiency bound proved by Hahn (1998).
- To estimate the variance of $\hat{\tau}_{\text {AIPW }}$, note that $\hat{\tau}_{\text {AIPW }}=\frac{1}{N} \sum_{i=1}^{N} l_{i}$, where

$$
\begin{aligned}
I_{i}= & \frac{D_{i}\left(Y_{i}-\hat{m}_{1}\left(\mathbf{X}_{i}\right)\right)}{\hat{g}\left(\mathbf{X}_{i}\right)}-\frac{\left(1-D_{i}\right)\left(Y_{i}-\hat{m}_{0}\left(\mathbf{X}_{i}\right)\right)}{1-\hat{g}\left(\mathbf{X}_{i}\right)} \\
& -\left[\hat{m}_{1}\left(\mathbf{X}_{i}\right)-\hat{m}_{0}\left(\mathbf{X}_{i}\right)\right]
\end{aligned}
$$

- Therefore, $\widehat{\operatorname{Var}}\left[\hat{\tau}_{A I P W}\right]=\frac{1}{N^{2}} \sum_{i=1}^{N}\left(I_{i}-\hat{\tau}_{A I P W}\right)^{2}$.
- $I_{i}$ represents the (efficient) influence function for $\hat{\tau}_{\text {AIPW }}$.
- The variance can be obtained by regression $l_{i}$ on 1 .
- It does not account for the uncertainties from estimating the nuisance parameters either.


## The AIPW estimator: simulation


\#\# The SATE is 3.09747

## The AIPW estimator: simulation

```
## The SATE is 3.097
## Estimate from the right regression model is 3.162
## Estimate from the right ipw estimator is 3.115
## Estimate from the wrong regression model is 3.602
## Estimate from the wrong ipw estimator is 4.213
## Estimate from the doubly robust estimator
## with wrong regression model is 3.111
## Estimate from the doubly robust estimator
## with wrong pscore model is 3.162
## Estimate from the doubly robust estimator
## with correct models is 3.107
```


## Bias correction in matching

- Lin, Ding, and Han (2023) proved that the bias correction estimator proposed by Abadie and Imbens (2011) is also doubly robust when $M$ grows with $N$.
- We first estimate $\hat{m}_{1}\left(\mathbf{X}_{i}\right)$ and $\hat{m}_{0}\left(\mathbf{X}_{i}\right)$.
- Then, for each treated observation $i$, we have

$$
\begin{aligned}
& \hat{Y}_{i}^{b c}(1)= \begin{cases}Y_{i} & D_{i}=1 \\
\frac{1}{M} \sum_{j \in \mathcal{J}_{M}(i)}\left(Y_{j}+\hat{m}_{0}\left(\mathbf{X}_{i}\right)-\hat{m}_{0}\left(\mathbf{X}_{j}\right)\right) & D_{i}=0,\end{cases} \\
& \hat{Y}_{i}^{b c}(0)= \begin{cases}\frac{1}{M} \sum_{j \in \mathcal{J}_{M}(i)}\left(Y_{j}+\hat{m}_{1}\left(\mathbf{X}_{i}\right)-\hat{m}_{1}\left(\mathbf{X}_{j}\right)\right) & D_{i}=1 \\
Y_{i} & D_{i}=0,\end{cases}
\end{aligned}
$$

- Similarly, the ATE estimate is

$$
\hat{\tau}_{M}^{b c}=\frac{1}{N} \sum_{i=1}^{N}\left(\widehat{Y}_{i}^{b c}(1)-\widehat{Y}_{i}^{b c}(0)\right)
$$

## Bias correction in matching

- They show that

$$
\begin{aligned}
\hat{\tau}_{M}^{b c}= & \frac{1}{N} \sum_{i=1}^{N}\left(\hat{m}_{1}\left(\mathbf{X}_{i}\right)-\hat{m}_{0}\left(\mathbf{X}_{i}\right)\right) \\
& +\frac{1}{N} \sum_{i=1}^{N}\left(2 D_{i}-1\right)\left(1+\frac{K_{M}(i)}{M}\right) \hat{\varepsilon}_{i}
\end{aligned}
$$

- As $M \rightarrow \infty, \frac{N_{0}}{N_{1}} \frac{K_{M}(i)}{M} \rightarrow \frac{f_{\mathbf{X} \mid D=1}\left(\mathbf{X}_{i}\right)}{f_{\mathbf{X} \mid D=0}\left(\mathbf{X}_{i}\right)}$, the density ratio at $\mathbf{X}_{i}$.
- Consequently,

$$
1+\frac{K_{M}(i)}{M} \rightarrow \begin{cases}\frac{1}{g\left(\mathbf{X}_{i}\right)} & D_{i}=1 \\ \frac{1}{1-g\left(\mathbf{X}_{i}\right)} & D_{i}=0\end{cases}
$$

- It approximates the AIPW estimator.
- They suggest that we should choose $M=N^{2 /(2+\kappa)}$ based on simulation evidence.


## Bias correction in matching: application

## \#\#

\#\# Estimate ..... 2295
\#\# AI SE ..... 1321.4
\#\# T-stat ..... 1.7368
\#\# p.val. ..... 0.082416
\#\#
\#\# Original number of observations ..... 2675
\#\# Original number of treated obs ..... 185
\#\# Matched number of observations ..... 185
\#\# Matched number of observations ..... (unweighted). 932
\#\#
\#\# Estimate ..... 1468.7
\#\# AI SE 1385.5
\#\# T-stat ..... 1.06
\#\# p.val. ..... 0.28914
\#\#
\#\# Original number of observations ..... 2675
\#\# Orioinal number of treated obs ..... 185

## Double robustness in regression

- Double robustness is built upon a simple idea from regression analysis.
- Consider the regression model

$$
Y_{i}=\tau D_{i}+\mathbf{X}_{i}^{\prime} \beta+\varepsilon_{i}
$$

- The OLS estimate $\hat{\tau}_{O L S}$ is consistent when $\varepsilon_{i}$ is uncorrelated with either $Y_{i}$ or $D_{i}$.
- Recall that the FWL theorem suggests

$$
\hat{\tau}_{O L S}=\left(\hat{\nu}^{\prime} \hat{\nu}\right)^{-1}\left(\hat{\nu}^{\prime} \hat{\varepsilon}\right),
$$

where $\hat{\nu}=\mathbf{Q D}, \hat{\varepsilon}=\mathbf{Q Y}$, and $\mathbf{Q}=\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$.

## Double robustness in regression

- Regressing $D_{i}$ on $\mathbf{X}_{i}$ implies the following regression model:

$$
D_{i}=\mathbf{X}_{i}^{\prime} \delta+\nu_{i}
$$

- We can show that

$$
\hat{\tau}_{O L S}=\tau+\left(\nu^{\prime} \mathbf{Q} \nu\right)^{-1}\left(\nu^{\prime} \mathbf{Q} \varepsilon\right)
$$

- $\hat{\tau}_{\text {OLS }} \rightarrow \tau$ when either $\nu^{\prime} \mathbf{Q} \rightarrow 0$ or $\mathbf{Q} \varepsilon \rightarrow 0$.
- The former holds when $E\left[\nu_{i} \mid \mathbf{X}_{i}\right]=0$ and the latter holds when $E\left[\varepsilon_{i} \mid \mathbf{X}_{i}\right]=0$.
- The correct specification of either model can ensure the consistency of $\hat{\tau}_{\text {OLS }}$.


## Summary

- Doubly robust estimators are robust to model misspecification not to the violation of identification assumptions.
- If strong ignorability is not satisfied, doubly robust estimators will be inconsistent.
- Therefore, both parts of the estimator should be functions of the same set of covariates.
- You cannot use the response surface to control for $\mathbf{X}_{i}$ and the propensity score model to control for $\mathbf{Z}_{i}$.
- Nor can we expect the estimator to have negligible bias when both models are slightly biased.
- Positivity is essential for these estimators to work.
- But how can we ensure that strong ignorability holds?
- Unconfoundedness seems more plausible when we condition on more variables.
- The opposite could be true for positivity! (D'Amour et al. 2021)


## Why machine learning?

- Now, let's assume that strong ignorability holds conditional on a large set of confounders.
- The dimensionality of the confounders can be even larger than the sample size, $P \gg N$.
- E.g., high-order terms and all the interaction terms of some covariates.
- If we know the values of the nuisance parameters, all the methods can still be applied.
- But estimating the nuisance parameters becomes really challenging.
- How do you run regression on 200 covariates when $N=100$ ?
- This is where machine learning (ML) can be useful.


## Basic ideas of machine learning

- We are interested in the relationship between $Y_{i}$ and $\mathbf{X}_{i}$, where the dimensionality of $\mathbf{X}_{i}$ could be high:

$$
Y_{i}=f\left(\mathbf{X}_{i}\right)+\varepsilon_{i}
$$

- The goal is to find an estimate $\hat{f}(\cdot)$ such that $E\left[\hat{f}\left(\mathbf{X}_{i}\right)-f\left(\mathbf{X}_{i}\right)\right]^{2}$ is minimized.
- Compared with conventional approaches, machine learning algorithms have two unique features: penalization and cross-validation.
- They allow us to select variables that have a strong prediction power of $Y_{i}$.


## Basic ideas of machine learning

- In regression, we try to minimize the SSR:

$$
\hat{f}=\arg \min _{f} \sum_{i=1}^{N}\left[Y_{i}-f\left(\mathbf{X}_{i}\right)\right]^{2}
$$

- In machine learning, we augment the objective function by adding a penalty term:

$$
\hat{f}=\arg \min _{f} \sum_{i=1}^{N}\left[Y_{i}-f\left(\mathbf{X}_{i}\right)\right]^{2}+\phi_{\lambda}(f)
$$

where $\phi_{\lambda}(f)$ measures the complexity of our estimate.

## Basic ideas of machine learning

- For example, the famous least absolute shrinkage and selection operator (LASSO) can be estimated from

$$
\hat{\beta}=\arg \min _{\beta} \sum_{i=1}^{N}\left(Y_{i}-\mathbf{X}_{i}^{\prime} \beta\right)^{2}+\lambda \sum_{p=2}^{P}\left|\beta_{p}\right| .
$$

- The first part is the familiar SSR, but we penalize models in which many variables have a non-zero coefficient.
- Consequently, the coefficient of many variables equals 0 in $\hat{\beta}$.
- The magnitude of $\lambda$ decides the severity of penalty.
- If $\lambda=0$, LASSO becomes linear regression.
- If $\lambda=\infty$, all the coefficients are zero and we predict $Y_{i}$ with $\bar{Y}$.
- It controls the bias-variance trade-off and should be selected via cross-validation.


## Basic ideas of machine learning

- Similar to bandwidth selection, we select a sequence of possible values for $\lambda$.
- Then, we randomly split the sample into the training set and the test set.
- For each $\lambda$, we solve $\hat{\beta}_{\lambda}$ on the training set.
- We test the performance of the linear model on the test set with:

$$
\psi(\lambda)=\frac{1}{\left|i \in S_{\text {test }}\right|} \sum_{i \in S_{\text {test }}}\left(Y_{i}-\mathbf{X}_{i}^{\prime} \hat{\beta}_{\lambda}\right)^{2}
$$

- The optimal choice, $\lambda^{*}$, minimizes $\psi(\lambda)$.
- Finally, we solve $\hat{\beta}^{*}$ using the entire sample and $\lambda^{*}$.
- LASSO works when we do not know which variables among a large set of candidates actually affect $Y_{i}$.


## Basic ideas of machine learning

- Machine learning algorithms are designed to maximize our ability to make predictions.
- Should we just let the algorithms predict the relationship between $Y_{i}$ and $\left(D_{i}, \mathbf{X}_{i}\right)$ for us and consider problem as solved?
- Not that simple!
- Even the most advanced AI cannot do causal inference, just like androids do not dream of electric sheep.
- They are selecting predictors rather than confounders.
- Variables that are strongly correlated with $D_{i}$ but weakly correlated with $Y_{i}$ may not be selected by LASSO (Chernozhukov, Hansen, and Spindler 2015).
- We should use ML algorithms to approximate the nuisance parameters.
- They are very useful when we don't know which variables from a large set of candidates are actually confounders.
- Yet some modifications of our basic methods are still necessary.


## ML in causal inference

- A byproduct of penalization is slow convergence rate, which causes biases in estimation.



## ML in causal inference

- Fortunately, this problem is less severe for doubly robust estimators.
- When we combine them with cross-fitting, biases caused by regularization can be negligible.
- This is an idea known as "double machine learning" proposed by Chernozhukov et al. (2017).
- For the AIPW estimator, we randomly split the sample into $K$ folds: $\left\{I_{k}\right\}_{k=1}^{K}$.
- For $i \in I_{k}$, we apply ML algorithms to estimate all the nuisance parameters, $\left(g(\cdot), m_{0}(\cdot), m_{1}(\cdot)\right)$, using units in $\cup_{l \neq k} I_{l}$.
- Then, we predict the values of the nuisance parameters for $i$, $\left(\hat{g}\left(\mathbf{X}_{i}\right), \hat{m}_{0}\left(\mathbf{X}_{i}\right), \hat{m}_{1}\left(\mathbf{X}_{i}\right)\right)$, and plug them into the AIPW estimator.
- We still use all the units hence do not lose any efficiency.


## ML in causal inference

```
## The SATE is 3.112
## Estimate from the naive ML estimator is 3.608
## Estimate from the DML estimator (no CF) is 3.347
## Estimate from the DML estimator is 3.354
```


## ML in causal inference

- Cross-fitting is similar to cross-validation we saw before.
- It ensures that the irreducible error in $I_{k}$ is independent to that from $\cup_{\neq k} l_{l}$ (no "double dipping").
- $\left(\hat{g}(\cdot), \hat{m}_{0}(\cdot), \hat{m}_{1}(\cdot)\right)$ behave as if they are known functions for units in $I_{k}$.
- The AIPW estimator satisfies a property we call "Neyman orthogonality."
- It means that the ATE estimate is insensitive/orthogonal to bias from estimating the nuisance parameters.
- For the AIPW estimator under cross-fitting, the regularization bias is bounded by

$$
\|\hat{g}-g\| *\left\|\hat{m}_{D}-m_{D}\right\|
$$

- If the convergence rate for both estimators is higher than $N^{1 / 4}$ (true for most ML algorithms), the bias will be negligible in large samples.


## Summary

- ML algorithms are designed for prediction rather than causal inference.
- They rely on penalization and cross-validation to find models with the highest prediction power.
- We can use them to estimate the nuisance parameters when the number of potential confounders is large.
- To eliminate bias from regularization, we need 1) estimators that satisfy Neyman orthogonality, and 2) cross-fitting.
- The AIPW estimator with nuisance parameters estimated by ML algorithms is root- N consistent and asymptotically normal.
- We can estimate its variance using the influence function.
- There are many other approaches to incorporate ML into causal inference.
- A fast-growing field in causal inference.


## References I

Abadie, Alberto, and Guido W Imbens. 2011. "Bias-Corrected Matching Estimators for Average Treatment Effects." Journal of Business \& Economic Statistics 29 (1): 1-11.
Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther
Duflo, Christian Hansen, and Whitney Newey. 2017.
"Double/Debiased/Neyman Machine Learning of Treatment
Effects." American Economic Review 107 (5): 261-65.
Chernozhukov, Victor, Christian Hansen, and Martin Spindler. 2015.
"Valid Post-Selection and Post-Regularization Inference: An
Elementary, General Approach." Annu. Rev. Econ. 7 (1):
649-88.
D'Amour, Alexander, Peng Ding, Avi Feller, Lihua Lei, and Jasjeet
Sekhon. 2021. "Overlap in Observational Studies with High-Dimensional Covariates." Journal of Econometrics 221 (2): 644-54.

## References II

Hahn, Jinyong. 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects." Econometrica, 315-31.
Lin, Zhexiao, Peng Ding, and Fang Han. 2023. "Estimation Based on Nearest Neighbor Matching: From Density Ratio to Average Treatment Effect." Econometrica 91 (6): 2187-217.
Robins, James M, Andrea Rotnitzky, and Lue Ping Zhao. 1994.
"Estimation of Regression Coefficients When Some Regressors Are Not Always Observed." Journal of the American Statistical Association 89 (427): 846-66.

