Doubly Robust Estimators

Ye Wang University of North Carolina at Chapel Hill

Linear Methods in Causal Inference POL1784

Review

- We have learned four methods to deal with confounders under strong ignorability.
- Matching, weighting, regression, and balancing.
- NN matching requires no extra restrictions but introduces a bias term and is inefficient.
- PS matching and IPW require accurate estimates of the propensity scores.
- They are sensitive to the violation of positivity.
- Regression is built upon the correct specification of the response surface.
- Balancing is valid when either the propensity score or the response surface satisfies a certain form.

Combine estimators

- We can actually combine previously mentioned estimators for a better performance.
- The combined estimator is usually more efficient.
- It may also possess the property we call "double robustness" (Robins, Rotnitzky, and Zhao 1994).
- Remember that different methods impose different structural restrictions, which may not hold in practice.
- The doubly robust estimators produce credible results when structural restrictions hold for either method.

 A classic example of doubly robust estimators is the augmented IPW (AIPW) estimator:

$$\begin{split} \hat{\tau}_{AIPW} = & \frac{1}{N} \sum_{i=1}^{N} \left[\frac{D_i(Y_i - \hat{m}_1(\mathbf{X}_i))}{\hat{g}(\mathbf{X}_i)} - \frac{(1 - D_i)(Y_i - \hat{m}_0(\mathbf{X}_i))}{1 - \hat{g}(\mathbf{X}_i)} \right] \\ &+ \frac{1}{N} \sum_{i=1}^{N} \left[\hat{m}_1(\mathbf{X}_i) - \hat{m}_0(\mathbf{X}_i) \right], \end{split}$$

where $\hat{g}(\mathbf{X}_i)$ is the estimated propensity score, $\hat{m}_1(\mathbf{X}_i)$ is an estimate for $E[Y_i|D_i = 1, \mathbf{X}_i]$ and $\hat{m}_0(\mathbf{X}_i)$ is an estimate for $E[Y_i|D_i = 0, \mathbf{X}_i]$.

- For example, we can assume that $g(\mathbf{X}_i) = \frac{e^{\mathbf{X}'_i\beta}}{1+e^{\mathbf{X}'_i\beta}}$, $m_0(\mathbf{X}_i) = \mathbf{X}'_i\beta_0$, and $m_1(\mathbf{X}_i) = \mathbf{X}'_i\beta_1$.
- Each model has its own structural restrictions.

- Suppose the regression models are correctly specified and the propensity score model is not, then $E\left[\frac{1}{N}\sum_{i=1}^{N}\left[\hat{m}_{1}(\mathbf{X}_{i}) \hat{m}_{0}(\mathbf{X}_{i})\right]\right] = τ.$
- Moreover, $\hat{\varepsilon}_i = Y_i \hat{m}_{D_i}(\mathbf{X}_i)$ is a random noise such that $E[\hat{\varepsilon}_i | \mathbf{X}_i] \to 0$.

► Now,

$$E[\hat{\tau}_{AIPW}] = \frac{1}{N} \sum_{i=1}^{N} E\left[\frac{D_i \hat{\varepsilon}_i}{\hat{g}(\mathbf{X}_i)} - \frac{(1 - D_i)\hat{\varepsilon}_i}{1 - \hat{g}(\mathbf{X}_i)}\right] \\ + \frac{1}{N} \sum_{i=1}^{N} E\left[\hat{m}_1(\mathbf{X}_i) - \hat{m}_0(\mathbf{X}_i)\right] \\ \rightarrow 0 + \tau = \tau$$

• This is true even when $\hat{g}(\mathbf{X}_i) \not\rightarrow g(\mathbf{X}_i)$.

 Suppose it is the other way around, we can see that the estimator is equivalent to

$$\begin{aligned} \hat{\tau}_{AIPW} = &\frac{1}{N} \sum_{i=1}^{N} \left[\frac{D_i Y_i}{\hat{g}(\mathbf{X}_i)} - \frac{(1 - D_i) Y_i}{1 - \hat{g}(\mathbf{X}_i)} \right] \\ &- \frac{1}{N} \sum_{i=1}^{N} \left[\frac{(D_i - \hat{g}(\mathbf{X}_i)) \hat{m}_1(\mathbf{X}_i)}{\hat{g}(\mathbf{X}_i)} - \frac{(D_i - \hat{g}(\mathbf{X}_i)) \hat{m}_0(\mathbf{X}_i))}{1 - \hat{g}(\mathbf{X}_i)} \right] \end{aligned}$$

The first part is just the IPW estimator thus consistent.
 Since ĝ(X_i) → g(X_i) and E[î_i|X_i] = E[D_i − g(X_i)|X_i] = 0,

$$\frac{1}{N}\sum_{i=1}^{N} E\left[\frac{\hat{\nu}_i \hat{m}_1(\mathbf{X}_i)}{\hat{g}(\mathbf{X}_i)} - \frac{\hat{\nu}_i \hat{m}_0(\mathbf{X}_i))}{1 - \hat{g}(\mathbf{X}_i)}\right] \to 0$$

• This is true even when $\hat{m}_{D_i}(\mathbf{X}_i) \not\rightarrow m_{D_i}(\mathbf{X}_i)$.

- When either model is correctly specified, $\hat{\tau}_{AIPW}$ is consistent for τ .
- ► When both are correctly specified, \$\tilde{\tau}_{AIPW}\$ reaches the efficiency bound proved by Hahn (1998).
- ► To estimate the variance of $\hat{\tau}_{AIPW}$, note that $\hat{\tau}_{AIPW} = \frac{1}{N} \sum_{i=1}^{N} I_i$, where

$$I_{i} = \frac{D_{i}(Y_{i} - \hat{m}_{1}(\mathbf{X}_{i}))}{\hat{g}(\mathbf{X}_{i})} - \frac{(1 - D_{i})(Y_{i} - \hat{m}_{0}(\mathbf{X}_{i}))}{1 - \hat{g}(\mathbf{X}_{i})} - [\hat{m}_{1}(\mathbf{X}_{i}) - \hat{m}_{0}(\mathbf{X}_{i})]$$

- Therefore, $\widehat{Var}[\hat{\tau}_{AIPW}] = \frac{1}{N^2} \sum_{i=1}^{N} (I_i \hat{\tau}_{AIPW})^2$.
- ► I_i represents the (efficient) influence function for $\hat{\tau}_{AIPW}$.
- The variance can be obtained by regression I_i on 1.
- It does not account for the uncertainties from estimating the nuisance parameters either.

The AIPW estimator: simulation

Х

The SATE is 3.09747

The AIPW estimator: simulation

The SATE is 3.097

Estimate from the right regression model is 3.162

Estimate from the right ipw estimator is 3.115

Estimate from the wrong regression model is 3.602

Estimate from the wrong ipw estimator is 4.213

Estimate from the doubly robust estimator
with wrong regression model is 3.111

Estimate from the doubly robust estimator
with wrong pscore model is 3.162

Estimate from the doubly robust estimator
with correct models is 3.107

Bias correction in matching

- Lin, Ding, and Han (2023) proved that the bias correction estimator proposed by Abadie and Imbens (2011) is also doubly robust when *M* grows with *N*.
- We first estimate $\hat{m}_1(\mathbf{X}_i)$ and $\hat{m}_0(\mathbf{X}_i)$.
- Then, for each treated observation i, we have

$$\begin{split} \hat{Y}_{i}^{bc}(1) &= \begin{cases} Y_{i} & D_{i} = 1\\ \frac{1}{M} \sum_{j \in \mathcal{J}_{M}(i)} (Y_{j} + \hat{m}_{0}(\mathbf{X}_{i}) - \hat{m}_{0}(\mathbf{X}_{j})) & D_{i} = 0, \end{cases} \\ \hat{Y}_{i}^{bc}(0) &= \begin{cases} \frac{1}{M} \sum_{j \in \mathcal{J}_{M}(i)} (Y_{j} + \hat{m}_{1}(\mathbf{X}_{i}) - \hat{m}_{1}(\mathbf{X}_{j})) & D_{i} = 1\\ Y_{i} & D_{i} = 0, \end{cases} \end{split}$$

Similarly, the ATE estimate is

$$\hat{\tau}_M^{bc} = rac{1}{N} \sum_{i=1}^N (\widehat{Y}_i^{bc}(1) - \widehat{Y}_i^{bc}(0)).$$

Bias correction in matching

They show that

$$egin{aligned} \hat{ au}_M^{bc} =& rac{1}{N}\sum_{i=1}^N (\hat{m}_1(\mathbf{X}_i) - \hat{m}_0(\mathbf{X}_i)) \ &+ rac{1}{N}\sum_{i=1}^N (2D_i - 1)\left(1 + rac{\mathcal{K}_M(i)}{M}
ight) \hat{arepsilon}_i \end{aligned}$$

► As
$$M \to \infty$$
, $\frac{N_0}{N_1} \frac{K_M(i)}{M} \to \frac{f_{\mathbf{X}|D=1}(\mathbf{X}_i)}{f_{\mathbf{X}|D=0}(\mathbf{X}_i)}$, the density ratio at \mathbf{X}_i .
► Consequently,

$$1 + \frac{K_{\mathcal{M}}(i)}{\mathcal{M}} \rightarrow \begin{cases} \frac{1}{g(\mathbf{X}_i)} & D_i = 1\\ \frac{1}{1 - g(\mathbf{X}_i)} & D_i = 0, \end{cases}$$

- It approximates the AIPW estimator.
- ► They suggest that we should choose M = N^{2/(2+κ)} based on simulation evidence.

Bias correction in matching: application

##

##	Estimate	2295	
##	AI SE	1321.4	
##	T-stat	1.7368	
##	p.val	0.082416	
##			
##	Original num	per of observations	2675
##	Original num	per of treated obs	185
##	Matched number	er of observations	185
##	Matched number	er of observations (unweighted).	932
##			
##	Estimate	1468.7	
##	AI SE	1385.5	
##	T-stat	1.06	
##	p.val	0.28914	
##			
##	Original num	per of observations	2675
##	Original num	per of treated obs	185 12/28

Double robustness in regression

- Double robustness is built upon a simple idea from regression analysis.
- Consider the regression model

$$Y_i = \tau D_i + \mathbf{X}'_i \beta + \varepsilon_i.$$

- The OLS estimate τ̂_{OLS} is consistent when ε_i is uncorrelated with either Y_i or D_i.
- Recall that the FWL theorem suggests

$$\hat{\tau}_{OLS} = (\hat{\nu}'\hat{\nu})^{-1}(\hat{\nu}'\hat{\varepsilon}),$$

where $\hat{\nu} = \mathbf{Q}\mathbf{D}$, $\hat{\varepsilon} = \mathbf{Q}\mathbf{Y}$, and $\mathbf{Q} = \mathbf{I} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$.

Double robustness in regression

• Regressing D_i on \mathbf{X}_i implies the following regression model:

$$D_i = \mathbf{X}'_i \delta + \nu_i.$$

We can show that

$$\hat{\tau}_{OLS} = \tau + \left(\nu' \mathbf{Q} \nu\right)^{-1} \left(\nu' \mathbf{Q} \varepsilon\right),$$

- $\hat{\tau}_{OLS} \rightarrow \tau$ when either $\nu' \mathbf{Q} \rightarrow 0$ or $\mathbf{Q} \varepsilon \rightarrow 0$.
- ► The former holds when $E[\nu_i | \mathbf{X}_i] = 0$ and the latter holds when $E[\varepsilon_i | \mathbf{X}_i] = 0$.
- ► The correct specification of either model can ensure the consistency of t̂_{OLS}.

Summary

- Doubly robust estimators are robust to model misspecification not to the violation of identification assumptions.
- If strong ignorability is not satisfied, doubly robust estimators will be inconsistent.
- Therefore, both parts of the estimator should be functions of the same set of covariates.
- You cannot use the response surface to control for X_i and the propensity score model to control for Z_i.
- Nor can we expect the estimator to have negligible bias when both models are slightly biased.
- Positivity is essential for these estimators to work.
- But how can we ensure that strong ignorability holds?
- Unconfoundedness seems more plausible when we condition on more variables.
- The opposite could be true for positivity! (D'Amour et al. 2021)

Why machine learning?

- Now, let's assume that strong ignorability holds conditional on a large set of confounders.
- ► The dimensionality of the confounders can be even larger than the sample size, P ≫ N.
- E.g., high-order terms and all the interaction terms of some covariates.
- If we know the values of the nuisance parameters, all the methods can still be applied.
- But estimating the nuisance parameters becomes really challenging.
- How do you run regression on 200 covariates when N = 100?
- ► This is where machine learning (ML) can be useful.

▶ We are interested in the relationship between Y_i and X_i, where the dimensionality of X_i could be high:

$$Y_i = f(\mathbf{X}_i) + \varepsilon_i.$$

- The goal is to find an estimate $\hat{f}(\cdot)$ such that $E\left[\hat{f}(\mathbf{X}_i) f(\mathbf{X}_i)\right]^2$ is minimized.
- Compared with conventional approaches, machine learning algorithms have two unique features: penalization and cross-validation.
- They allow us to select variables that have a strong prediction power of Y_i.

In regression, we try to minimize the SSR:

$$\hat{f} = \arg\min_{f} \sum_{i=1}^{N} [Y_i - f(\mathbf{X}_i)]^2.$$

In machine learning, we augment the objective function by adding a penalty term:

$$\hat{f} = \arg\min_{f} \sum_{i=1}^{N} [Y_i - f(\mathbf{X}_i)]^2 + \phi_{\lambda}(f),$$

where $\phi_{\lambda}(f)$ measures the complexity of our estimate.

 For example, the famous least absolute shrinkage and selection operator (LASSO) can be estimated from

$$\hat{eta} = rg\min_{eta} \sum_{i=1}^{N} (Y_i - \mathbf{X}_i'eta)^2 + \lambda \sum_{p=2}^{P} |eta_p|.$$

- The first part is the familiar SSR, but we penalize models in which many variables have a non-zero coefficient.
- Consequently, the coefficient of many variables equals 0 in $\hat{\beta}$.
- The magnitude of λ decides the severity of penalty.
- If $\lambda = 0$, LASSO becomes linear regression.
- If $\lambda = \infty$, all the coefficients are zero and we predict Y_i with \overline{Y} .
- It controls the bias-variance trade-off and should be selected via cross-validation.

- Similar to bandwidth selection, we select a sequence of possible values for λ.
- Then, we randomly split the sample into the training set and the test set.
- For each λ , we solve $\hat{\beta}_{\lambda}$ on the training set.
- We test the performance of the linear model on the test set with:

$$\psi(\lambda) = rac{1}{|i \in \mathcal{S}_{test}|} \sum_{i \in \mathcal{S}_{test}} (Y_i - \mathbf{X}'_i \hat{eta}_\lambda)^2.$$

- The optimal choice, λ^* , minimizes $\psi(\lambda)$.
- Finally, we solve $\hat{\beta}^*$ using the entire sample and λ^* .
- LASSO works when we do not know which variables among a large set of candidates actually affect Y_i.

- Machine learning algorithms are designed to maximize our ability to make predictions.
- ► Should we just let the algorithms predict the relationship between Y_i and (D_i, X_i) for us and consider problem as solved?
- Not that simple!
- Even the most advanced AI cannot do causal inference, just like androids do not dream of electric sheep.
- They are selecting predictors rather than confounders.
- Variables that are strongly correlated with D_i but weakly correlated with Y_i may not be selected by LASSO (Chernozhukov, Hansen, and Spindler 2015).
- We should use ML algorithms to approximate the nuisance parameters.
- They are very useful when we don't know which variables from a large set of candidates are actually confounders.
- Yet some modifications of our basic methods are still necessary.

 A byproduct of penalization is slow convergence rate, which causes biases in estimation.

N = 200 Bandwidth = 0.04001

- Fortunately, this problem is less severe for doubly robust estimators.
- When we combine them with cross-fitting, biases caused by regularization can be negligible.
- This is an idea known as "double machine learning" proposed by Chernozhukov et al. (2017).
- ► For the AIPW estimator, we randomly split the sample into K folds: {I_k}^K_{k=1}.
- For i ∈ I_k, we apply ML algorithms to estimate all the nuisance parameters, (g(·), m₀(·), m₁(·)), using units in ∪_{I≠k}I_I.
- ▶ Then, we predict the values of the nuisance parameters for *i*, $(\hat{g}(\mathbf{X}_i), \hat{m}_0(\mathbf{X}_i), \hat{m}_1(\mathbf{X}_i))$, and plug them into the AIPW estimator.
- ▶ We still use all the units hence do not lose any efficiency.

- ## The SATE is 3.112
- **##** Estimate from the naive ML estimator is 3.608
- ## Estimate from the DML estimator (no CF) is 3.347
- ## Estimate from the DML estimator is 3.354

- Cross-fitting is similar to cross-validation we saw before.
- It ensures that the irreducible error in *I_k* is independent to that from ∪_{*I*≠*k*}*I_I* (no "double dipping").
- ► (ĝ(·), m̂₀(·), m̂₁(·)) behave as if they are known functions for units in I_k.
- The AIPW estimator satisfies a property we call "Neyman orthogonality."
- It means that the ATE estimate is insensitive/orthogonal to bias from estimating the nuisance parameters.
- For the AIPW estimator under cross-fitting, the regularization bias is bounded by

$$||\hat{g} - g|| * ||\hat{m}_D - m_D||$$

► If the convergence rate for both estimators is higher than N^{1/4} (true for most ML algorithms), the bias will be negligible in large samples.

Summary

- ML algorithms are designed for prediction rather than causal inference.
- They rely on penalization and cross-validation to find models with the highest prediction power.
- We can use them to estimate the nuisance parameters when the number of potential confounders is large.
- ► To eliminate bias from regularization, we need 1) estimators that satisfy Neyman orthogonality, and 2) cross-fitting.
- The AIPW estimator with nuisance parameters estimated by ML algorithms is root-N consistent and asymptotically normal.
- ▶ We can estimate its variance using the influence function.
- There are many other approaches to incorporate ML into causal inference.
- A fast-growing field in causal inference.

References I

Abadie, Alberto, and Guido W Imbens. 2011. "Bias-Corrected Matching Estimators for Average Treatment Effects." Journal of Business & Economic Statistics 29 (1): 1–11. Chernozhukov, Victor, Denis Chetverikov, Mert Demirer. Esther Duflo, Christian Hansen, and Whitney Newey. 2017. "Double/Debiased/Neyman Machine Learning of Treatment Effects." American Economic Review 107 (5): 261-65. Chernozhukov, Victor, Christian Hansen, and Martin Spindler. 2015. "Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach." Annu. Rev. Econ. 7 (1): 649-88.

D'Amour, Alexander, Peng Ding, Avi Feller, Lihua Lei, and Jasjeet Sekhon. 2021. "Overlap in Observational Studies with High-Dimensional Covariates." *Journal of Econometrics* 221 (2): 644–54.

References II

Hahn, Jinyong. 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects." *Econometrica*, 315–31.

- Lin, Zhexiao, Peng Ding, and Fang Han. 2023. "Estimation Based on Nearest Neighbor Matching: From Density Ratio to Average Treatment Effect." *Econometrica* 91 (6): 2187–217.
- Robins, James M, Andrea Rotnitzky, and Lue Ping Zhao. 1994.
 "Estimation of Regression Coefficients When Some Regressors Are Not Always Observed." *Journal of the American Statistical Association* 89 (427): 846–66.