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Review

I We can rely on either the asymptotic approach or resampling
techniques for statistical inference.

I The latter includes Fisher’s randomization test, bootstrap, and
jackknife.

I The attraction is that we may avoid technical details such as
calculating the variance or obtaining critical values.

I But the FRT only works under the sharp null.
I Bootstrap requires a smooth estimator.
I The Efron method works only when the true distribution is

symmetric.
I The percentile-t method provides the best approximation as the

t-statistic is pivotal.
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Bivariate regression

I We have been familiar with the linear regression model with
one predictor:

Yi = µ+ τDi + εi ,

E [εi |Di ] = 0.
I Yi : the outcome, the response, the dependent variable, the

label.
I Di : the treatment, the regressor/predictor, the independent

variable, the feature.
I What have we assumed (and not assumed) in this model?
I A linear relationship between Y and D and a constant effect.
I No confounder and potentially heteroscedasticity:

Var(εi |Di ) = σ2
i .

I No requirement on the error term’s distribution.
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Bivariate regression

I The regression coefficients can be estimated via

τ̂ =
∑N

i=1(Yi − Ȳ )(Di − D̄)∑N
i=1(Di − D̄)2

µ̂ = Ȳ − τ̂ D̄.

I They are solutions to the minimization problem:

(µ̂, τ̂)′ = argmin
µ,τ

N∑
i=1

(Yi − µ− τDi )2.

I This is known as the ordinary least squares (OLS) method.
I It is an estimator that is independent to the model we use.
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Bivariate regression

I Define f (µ, τ) =
∑N

i=1(Yi − µ− τDi )2, we can see that

∂f (µ, τ)
∂µ

= −2
N∑

i=1
(Yi − µ− τDi ),

∂f (µ, τ)
∂τ

= −2
N∑

i=1
Di (Yi − µ− τDi ).

I The first order conditions lead to the estimators.
I Then, we predict the outcome with Ŷi = µ̂+ τ̂Di .
I The regression residual is ε̂i = Yi − Ŷi and

∑N
i=1 ε̂

2
i is called

the sum of squared residuals (SSR).
I R2 = Var [Yi ]−SSR

Var [Yi ] measures the prediction power of the
regressor(s).
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Properties of the OLS estimator

I We focus on the properties of τ̂ :

τ̂ =
∑N

i=1(Yi − Ȳ )(Di − D̄)∑N
i=1(Di − D̄)2

=
∑N

i=1(τ(Di − D̄) + εi − ε̄)(Di − D̄)∑N
i=1(Di − D̄)2

= τ +
∑N

i=1(εi − ε̄)(Di − D̄)∑N
i=1(Di − D̄)2

.

I We can see that E [τ̂ ] = τ .
I limN→∞ τ̂ = τ when conditions for the law of large numbers

are satisfied.
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Bivariate regression in practice

I Remember that the coefficient τ tells us the change in Y when
D increases by 1 unit.

I It makes more sense when Y is continuous and D is either
binary or continuous.

I When Y is binary, we call the regression model the “linear
probability model.”

I We interpret τ as the effect of D on the probability for Y to be
1.

I One concern is that the predicted outcome may be beyond the
range of [0, 1].

I We can fix this problem by using alternative models such as
Probit or Logit.

I But the linear probability model is Ok if you don’t care about
prediction.
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Bivariate regression in practice

I When Y is categorical or a count variable, a τ units increase in
it is hard to interpret.

I We may respectively use multinomial logit and count models,
such as the Poisson model or the negative binomial model.

I No model is more correct than the others, and you should
choose the one that facilitates your interpretation.

I When D is categorical, it is better to include dummies standing
for each of the category as regressors.

I It is also common to transform Y to logY , then

τ = d logY
dD = 1

Y
dY
dD ≈

∆Y
Y .

I The coefficient can be interpreted as the change of Y in
percentages as X increases by 1 unit.

I This is known as elasticity in economics.
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Bivariate regression in practice
I When Y may take the value of 0, we replace logY with

log(Y + 1) or log(Y +
√

Y 2 + 1).
I They behave in very similar ways.
I But it is crucial to understand what 0 stands for.
I If your thermometer toward Trump is 0, maybe you just hate

him.
I If your monthly income is 0, it may suggest you are not on the

labor market.
I In the latter case, log(Y + 1) is not appropriate if there are

many 0s in data (Chen and Roth 2023).
I The change from 0 to 1 (the extensive margin) is very different

from that from 1 to 2 (the intensive margin).
I We know that for any positive number c,

log(cY + 1) ≈ log c + logY .
I The magnitude of the extensive margin effect can be driven by

Y ’s unit.
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Multivariate regression

I Now, let’s consider the multivariate regression model

Y = Xβ + ε,

E [εi |Xi ] = 0,

where Y = (Y1,Y2, . . . ,YN)′, X = (X1,X2, . . . ,XN)′, and
ε = (ε1, ε2, . . . , εN)′.

I Note that Xi is a P × 1 vector, hence X is a N × P matrix.
I In bivariate regression, Xi = (1,Di )′ and β = (µ, τ)′.
I Similarly, we estimate β by solving the minimization problem

β̂ = argmin
β

N∑
i=1

(Yi − X′iβ)2.
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Multivariate regression

I The first-order condition is

2
N∑

i=1
Xi (Yi − X′i β̂) = 0.

I It leads to

β̂ =
( N∑

i=1
XiX′i

)−1( N∑
i=1

XiYi

)
= (X′X)−1(X′Y).

I β̂ is clearly a linear estimator.
I The predicted outcome equals Xβ̂ = X(X′X)−1(X′Y).
I P = X(X′X)−1X′ is known as the projection matrix.
I It transforms Y to an element in the space spanned by X, Ŷ.
I Each diagonal element, Pii , is called the leverage of unit i .
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Multivariate regression

I As before, we plug in the regression equation, and obtain

β̂ = (X′X)−1(X′Y)
= β + (X′X)−1(X′ε).

I It is straightforward to see that E [β̂] = β, and

Var
[
β̂
]

= Var
[
(X′X)−1(Xε)

]
= E

[
(X′X)−1(Xεε′X′)(X′X)−1

]
→ 0.

I Note that Var
[
β̂
]
is a P × P matrix (the variance-covariance

matrix).
I Hence, β̂ → β when N →∞.
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Inference in multivariate regression
I Define the vector of regression residuals as
ε̂ = (ε̂1, ε̂1, . . . , ε̂N)′, where ε̂i = Yi − X′i β̂.

I We can estimate the variance of β̂ using

V̂ar
[
β̂
]

= (X′X)−1(XΣ̂X′)(X′X)−1,

where Σ̂ = ε̂ε̂′.
I This is known as the sandwich variance estimator.
I Since the units are independent to each other, we impose the

constraint that Σ̂ is diagonal, hence XΣ̂X′ =
∑N

i=1 ε̂
2
i XiX′i .

I This is the Eicker-Huber-White (EHW) robust variance
estimator.

I Under homoscedasticity, E [ε2
i |Xi ] = σ2 for any i , and

Var
[
β̂
]

= σ2E
[
(X′X)−1].

I The sandwich variance estimator can then be simplified to
σ̂2(X′X)−1, where σ̂2 = 1

N−1
∑N

i=1 ε̂
2
i .
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Inference in multivariate regression

I It is easy to show that
√

N(β̂ − β)→ N
(
0,NVar

[
β̂
])
.

I Hence, we can construct the 95% confidence interval of any
element in β as[

β̂p − 1.96 ∗
√

V̂ar
[
β̂p
]
, β̂p + 1.96 ∗

√
V̂ar

[
β̂p
]]
.

I In theory, the coverage rate should be 95%.
I But in practice, it is usually much lower than that (the

Behrens–Fisher problem).
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Inference in multivariate regression (*)

I We do know that β̂p−βp√
Var[β̂p] converges to normality at the

root-N rate.
I But we replace the denominator with an estimate, which

creates complex asymptotics in the statistic.
I When ε is normal, we know that β̂p−βp√

V̂ar[β̂p]
obeys the

t-distribution.
I Using critical values from the normal distribution causes bias.
I After all, asymptotic distribution is an approximation!
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Inference in multivariate regression (*)

I Multiple solutions have been proposed (but never welcomed).
I We can modify the variance estimate or the critical value.
I There are multiple variance estimators.
I HC1: multiply V̂ar

[
β̂
]
by N

N−P+1 .
I HC2: replace each ε̂i with ε̂i√

1−Pii
, where Pii is the (i , i)th

entry of the projection matrix.
I HC3: replace each ε̂i with ε̂i

1−Pii
.

I We can use the critical value from the t-distribution rather
than the normal distribution.

I The t-distribution requires researchers to specify the degree of
freedom of the model.

I See Imbens and Kolesar (2016) for technical details.

16 / 19



Hypothesis testing in multivariate regression

I The regression model enables us to test hypothesis regarding a
linear combination of β.

I They usually take the form of Rβ = r, where R is a R × P
matrix.

I For example, when P = 3 and the null hypothesis is
β1 + β2 = 0 and β3 = 0,

R =
(
1 1 0
0 0 1

)
and r =

(
0
0

)

I How do we test the null hypothesis that β1 = β2 = β3 = 0?
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Hypothesis testing in multivariate regression
I Using the asymptotic normality of β̂, we know that

√
N(Rβ̂ − Rβ) =

√
N(Rβ̂ − r)

→ N
(
0,NR ∗ Var

[
β̂
]

R′
)
.

I Therefore, the Wald statistic

W = (Rβ̂ − r)′
(
R ∗ Var

[
β̂
]

R′
)−1

(Rβ̂ − r)→ χ2(R).

I We reject the null hypothesis if W is sufficiently large.
I The Wald test is equivalent to the F-test under

homoscedasticity, as

F = W
R ∼ F (R,N − P).
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