Regression I

Ye Wang
 University of North Carolina at Chapel Hill

> Linear Methods in Causal Inference POLI784

Review

- We can rely on either the asymptotic approach or resampling techniques for statistical inference.
- The latter includes Fisher's randomization test, bootstrap, and jackknife.
- The attraction is that we may avoid technical details such as calculating the variance or obtaining critical values.
- But the FRT only works under the sharp null.
- Bootstrap requires a smooth estimator.
- The Efron method works only when the true distribution is symmetric.
- The percentile-t method provides the best approximation as the t-statistic is pivotal.

Bivariate regression

- We have been familiar with the linear regression model with one predictor:

$$
\begin{aligned}
& Y_{i}=\mu+\tau D_{i}+\varepsilon_{i} \\
& E\left[\varepsilon_{i} \mid D_{i}\right]=0
\end{aligned}
$$

- Y_{i} : the outcome, the response, the dependent variable, the label.
- D_{i} : the treatment, the regressor/predictor, the independent variable, the feature.
- What have we assumed (and not assumed) in this model?
- A linear relationship between Y and D and a constant effect.
- No confounder and potentially heteroscedasticity: $\operatorname{Var}\left(\varepsilon_{i} \mid D_{i}\right)=\sigma_{i}^{2}$.
- No requirement on the error term's distribution.

Bivariate regression

- The regression coefficients can be estimated via

$$
\begin{aligned}
& \hat{\tau}=\frac{\sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)\left(D_{i}-\bar{D}\right)}{\sum_{i=1}^{N}\left(D_{i}-\bar{D}\right)^{2}} \\
& \hat{\mu}=\bar{Y}-\hat{\tau} \bar{D}
\end{aligned}
$$

- They are solutions to the minimization problem:

$$
(\hat{\mu}, \hat{\tau})^{\prime}=\arg \min _{\mu, \tau} \sum_{i=1}^{N}\left(Y_{i}-\mu-\tau D_{i}\right)^{2}
$$

- This is known as the ordinary least squares (OLS) method.
- It is an estimator that is independent to the model we use.

Bivariate regression

- Define $f(\mu, \tau)=\sum_{i=1}^{N}\left(Y_{i}-\mu-\tau D_{i}\right)^{2}$, we can see that

$$
\begin{aligned}
& \frac{\partial f(\mu, \tau)}{\partial \mu}=-2 \sum_{i=1}^{N}\left(Y_{i}-\mu-\tau D_{i}\right) \\
& \frac{\partial f(\mu, \tau)}{\partial \tau}=-2 \sum_{i=1}^{N} D_{i}\left(Y_{i}-\mu-\tau D_{i}\right)
\end{aligned}
$$

- The first order conditions lead to the estimators.
- Then, we predict the outcome with $\hat{Y}_{i}=\hat{\mu}+\hat{\tau} D_{i}$.
- The regression residual is $\hat{\varepsilon}_{i}=Y_{i}-\hat{Y}_{i}$ and $\sum_{i=1}^{N} \hat{\varepsilon}_{i}^{2}$ is called the sum of squared residuals (SSR).
- $R^{2}=\frac{\operatorname{Var}\left[Y_{i}\right]-S S R}{\operatorname{Var}\left[Y_{i}\right]}$ measures the prediction power of the regressor(s).

Properties of the OLS estimator

- We focus on the properties of $\hat{\tau}$:

$$
\begin{aligned}
\hat{\tau} & =\frac{\sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)\left(D_{i}-\bar{D}\right)}{\sum_{i=1}^{N}\left(D_{i}-\bar{D}\right)^{2}} \\
& =\frac{\sum_{i=1}^{N}\left(\tau\left(D_{i}-\bar{D}\right)+\varepsilon_{i}-\bar{\varepsilon}\right)\left(D_{i}-\bar{D}\right)}{\sum_{i=1}^{N}\left(D_{i}-\bar{D}\right)^{2}} \\
& =\tau+\frac{\sum_{i=1}^{N}\left(\varepsilon_{i}-\bar{\varepsilon}\right)\left(D_{i}-\bar{D}\right)}{\sum_{i=1}^{N}\left(D_{i}-\bar{D}\right)^{2}} .
\end{aligned}
$$

- We can see that $E[\hat{\tau}]=\tau$.
- $\lim _{N \rightarrow \infty} \hat{\tau}=\tau$ when conditions for the law of large numbers are satisfied.

Bivariate regression in practice

- Remember that the coefficient τ tells us the change in Y when D increases by 1 unit.
- It makes more sense when Y is continuous and D is either binary or continuous.
- When Y is binary, we call the regression model the "linear probability model."
- We interpret τ as the effect of D on the probability for Y to be 1.
- One concern is that the predicted outcome may be beyond the range of $[0,1]$.
- We can fix this problem by using alternative models such as Probit or Logit.
- But the linear probability model is Ok if you don't care about prediction.

Bivariate regression in practice

- When Y is categorical or a count variable, a τ units increase in it is hard to interpret.
- We may respectively use multinomial logit and count models, such as the Poisson model or the negative binomial model.
- No model is more correct than the others, and you should choose the one that facilitates your interpretation.
- When D is categorical, it is better to include dummies standing for each of the category as regressors.
- It is also common to transform Y to $\log Y$, then

$$
\tau=\frac{d \log Y}{d D}=\frac{1}{Y} \frac{d Y}{d D} \approx \frac{\Delta Y}{Y}
$$

- The coefficient can be interpreted as the change of Y in percentages as X increases by 1 unit.
- This is known as elasticity in economics.

Bivariate regression in practice

- When Y may take the value of 0 , we replace $\log Y$ with $\log (Y+1)$ or $\log \left(Y+\sqrt{Y^{2}+1}\right)$.
- They behave in very similar ways.
- But it is crucial to understand what 0 stands for.
- If your thermometer toward Trump is 0, maybe you just hate him.
- If your monthly income is 0 , it may suggest you are not on the labor market.
- In the latter case, $\log (Y+1)$ is not appropriate if there are many 0s in data (Chen and Roth 2023).
- The change from 0 to 1 (the extensive margin) is very different from that from 1 to 2 (the intensive margin).
- We know that for any positive number c, $\log (c Y+1) \approx \log c+\log Y$.
- The magnitude of the extensive margin effect can be driven by Y 's unit.

Multivariate regression

- Now, let's consider the multivariate regression model

$$
\begin{aligned}
& \mathbf{Y}=\mathbf{X} \beta+\varepsilon, \\
& E\left[\varepsilon_{i} \mid \mathbf{X}_{i}\right]=0,
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } \mathbf{Y}=\left(Y_{1}, Y_{2}, \ldots, Y_{N}\right)^{\prime}, \mathbf{X}=\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{N}\right)^{\prime} \text {, and } \\
& \varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{N}\right)^{\prime}
\end{aligned}
$$

- Note that \mathbf{X}_{i} is a $P \times 1$ vector, hence \mathbf{X} is a $N \times P$ matrix.
- In bivariate regression, $\mathbf{X}_{i}=\left(1, D_{i}\right)^{\prime}$ and $\beta=(\mu, \tau)^{\prime}$.
- Similarly, we estimate β by solving the minimization problem

$$
\hat{\beta}=\arg \min _{\beta} \sum_{i=1}^{N}\left(Y_{i}-\mathbf{X}_{i}^{\prime} \beta\right)^{2} .
$$

Multivariate regression

- The first-order condition is

$$
2 \sum_{i=1}^{N} \mathbf{X}_{i}\left(Y_{i}-\mathbf{X}_{i}^{\prime} \hat{\beta}\right)=0
$$

- It leads to

$$
\hat{\beta}=\left(\sum_{i=1}^{N} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)^{-1}\left(\sum_{i=1}^{N} \mathbf{X}_{i} Y_{i}\right)=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{Y}\right)
$$

- $\hat{\beta}$ is clearly a linear estimator.
- The predicted outcome equals $\mathbf{X} \hat{\beta}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{Y}\right)$.
- $\mathbf{P}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$ is known as the projection matrix.
- It transforms \mathbf{Y} to an element in the space spanned by $\mathbf{X}, \hat{\mathbf{Y}}$.
- Each diagonal element, $P_{i i}$, is called the leverage of unit i.

Multivariate regression

- As before, we plug in the regression equation, and obtain

$$
\begin{aligned}
\hat{\beta} & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{Y}\right) \\
& =\beta+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\prime} \varepsilon\right) .
\end{aligned}
$$

- It is straightforward to see that $E[\hat{\beta}]=\beta$, and

$$
\begin{aligned}
\operatorname{Var}[\hat{\beta}] & =\operatorname{Var}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}(\mathbf{X} \varepsilon)\right] \\
& =E\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\mathbf{X} \varepsilon \varepsilon^{\prime} \mathbf{X}^{\prime}\right)\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right] \\
& \rightarrow \mathbf{0}
\end{aligned}
$$

- Note that $\operatorname{Var}[\hat{\beta}]$ is a $P \times P$ matrix (the variance-covariance matrix).
- Hence, $\hat{\beta} \rightarrow \beta$ when $N \rightarrow \infty$.

Inference in multivariate regression

- Define the vector of regression residuals as $\hat{\varepsilon}=\left(\hat{\varepsilon}_{1}, \hat{\varepsilon}_{1}, \ldots, \hat{\varepsilon}_{N}\right)^{\prime}$, where $\hat{\varepsilon}_{i}=Y_{i}-\mathbf{X}_{i}^{\prime} \hat{\beta}$.
- We can estimate the variance of $\hat{\beta}$ using

$$
\widehat{\operatorname{Var}}[\hat{\beta}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\mathbf{X} \hat{\Sigma} \mathbf{X}^{\prime}\right)\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

where $\hat{\Sigma}=\hat{\varepsilon} \hat{\varepsilon}^{\prime}$.

- This is known as the sandwich variance estimator.
- Since the units are independent to each other, we impose the constraint that $\hat{\Sigma}$ is diagonal, hence $\mathbf{X} \hat{\Sigma} \mathbf{X}^{\prime}=\sum_{i=1}^{N} \hat{\varepsilon}_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}$.
- This is the Eicker-Huber-White (EHW) robust variance estimator.
- Under homoscedasticity, $E\left[\varepsilon_{i}^{2} \mid \mathbf{X}_{i}\right]=\sigma^{2}$ for any i, and $\operatorname{Var}[\hat{\beta}]=\sigma^{2} E\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]$.
- The sandwich variance estimator can then be simplified to $\hat{\sigma}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$, where $\hat{\sigma}^{2}=\frac{1}{N-1} \sum_{i=1}^{N} \hat{\varepsilon}_{i}^{2}$.

Inference in multivariate regression

- It is easy to show that

$$
\sqrt{N}(\hat{\beta}-\beta) \rightarrow \mathcal{N}(0, N \operatorname{Var}[\hat{\beta}]) .
$$

- Hence, we can construct the 95\% confidence interval of any element in β as

$$
\left[\hat{\beta}_{p}-1.96 * \sqrt{\widehat{\operatorname{Var}}\left[\hat{\beta}_{p}\right]}, \hat{\beta}_{p}+1.96 * \sqrt{\widehat{\operatorname{Var}}\left[\hat{\beta}_{p}\right]}\right] .
$$

- In theory, the coverage rate should be 95%.
- But in practice, it is usually much lower than that (the Behrens-Fisher problem).

Inference in multivariate regression (*)

- We do know that $\frac{\hat{\beta}_{p}-\beta_{p}}{\sqrt{\operatorname{Var}\left[\hat{\beta}_{p}\right]}}$ converges to normality at the root-N rate.
- But we replace the denominator with an estimate, which creates complex asymptotics in the statistic.
- When ε is normal, we know that $\frac{\hat{\beta}_{p}-\beta_{p}}{\sqrt{\widehat{\operatorname{Var}}\left[\hat{\beta}_{p}\right]}}$ obeys the t-distribution.
- Using critical values from the normal distribution causes bias.
- After all, asymptotic distribution is an approximation!

Inference in multivariate regression $(*)$

- Multiple solutions have been proposed (but never welcomed).
- We can modify the variance estimate or the critical value.
- There are multiple variance estimators.
- HC1: multiply $\widehat{\operatorname{Var}}[\hat{\beta}]$ by $\frac{N}{N-P+1}$.
- HC2: replace each $\hat{\varepsilon}_{i}$ with $\frac{\hat{\varepsilon}_{i}}{\sqrt{1-P_{i i}}}$, where $P_{i j}$ is the (i, i) th entry of the projection matrix.
- HC3: replace each $\hat{\varepsilon}_{i}$ with $\frac{\hat{\varepsilon}_{i}}{1-P_{i i}}$.
- We can use the critical value from the t-distribution rather than the normal distribution.
- The t-distribution requires researchers to specify the degree of freedom of the model.
- See Imbens and Kolesar (2016) for technical details.

Hypothesis testing in multivariate regression

- The regression model enables us to test hypothesis regarding a linear combination of β.
- They usually take the form of $\mathbf{R} \beta=\mathbf{r}$, where \mathbf{R} is a $R \times P$ matrix.
- For example, when $P=3$ and the null hypothesis is $\beta_{1}+\beta_{2}=0$ and $\beta_{3}=0$,

$$
\mathbf{R}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { and } \mathbf{r}=\binom{0}{0}
$$

- How do we test the null hypothesis that $\beta_{1}=\beta_{2}=\beta_{3}=0$?

Hypothesis testing in multivariate regression

- Using the asymptotic normality of $\hat{\beta}$, we know that

$$
\begin{aligned}
\sqrt{N}(\mathbf{R} \hat{\beta}-\mathbf{R} \beta) & =\sqrt{N}(\mathbf{R} \hat{\beta}-\mathbf{r}) \\
& \rightarrow \mathcal{N}\left(0, N \mathbf{R} * \operatorname{Var}[\hat{\beta}] \mathbf{R}^{\prime}\right) .
\end{aligned}
$$

- Therefore, the Wald statistic

$$
W=(\mathbf{R} \hat{\beta}-\mathbf{r})^{\prime}\left(\mathbf{R} * \operatorname{Var}[\hat{\beta}] \mathbf{R}^{\prime}\right)^{-1}(\mathbf{R} \hat{\beta}-\mathbf{r}) \rightarrow \chi^{2}(R)
$$

- We reject the null hypothesis if W is sufficiently large.
- The Wald test is equivalent to the F-test under homoscedasticity, as

$$
F=\frac{W}{R} \sim F(R, N-P)
$$

References I

Chen, Jiafeng, and Jonathan Roth. 2023. "Logs with Zeros? Some Problems and Solutions." The Quarterly Journal of Economics, qjad054.
Imbens, Guido W, and Michal Kolesar. 2016. "Robust Standard Errors in Small Samples: Some Practical Advice." Review of Economics and Statistics 98 (4): 701-12.

