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Review

We can rely on either the asymptotic approach or resampling
techniques for statistical inference.

The latter includes Fisher's randomization test, bootstrap, and
jackknife.

The attraction is that we may avoid technical details such as
calculating the variance or obtaining critical values.

But the FRT only works under the sharp null.

» Bootstrap requires a smooth estimator.

The Efron method works only when the true distribution is
symmetric.

The percentile-t method provides the best approximation as the
t-statistic is pivotal.



Bivariate regression

v

We have been familiar with the linear regression model with
one predictor:

Yi=p+7Di+ e,

E[E,’|D,’] =0.
Y;: the outcome, the response, the dependent variable, the
label.

D;: the treatment, the regressor/predictor, the independent
variable, the feature.

» What have we assumed (and not assumed) in this model?

> A linear relationship between Y and D and a constant effect.

No confounder and potentially heteroscedasticity:
Var(e;|D;) = o2.
No requirement on the error term'’s distribution.
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Bivariate regression

v

The regression coefficients can be estimated via

> (Yi = Y)(Di — D)
Y (Di — D)2
fp=Y—7D.

P =

v

They are solutions to the minimization problem:

N
(A, ) = arg n;?'rn Z(Y/ — - TD/)2.
=1

v

This is known as the ordinary least squares (OLS) method.
It is an estimator that is independent to the model we use.
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Bivariate regression

» Define f(u,7) = SN (Y; — i — 7D;)?, we can see that

M _QZY p— 7D;),
afg‘T’T) = —220,(\4—M—TD,).

i=1

» The first order conditions lead to the estimators.

» Then, we predict the outcome with Y, = i+ 7D;.

» The regression residual is £&; = Y; — \A/, and Z,N:l é?
the sum of squared residuals (SSR).

» R? = %&?‘SR measures the prediction power of the
regressor(s).

is called

5/19



Properties of the OLS estimator

» We focus on the properties of 7:

_ XY= Y)(Di - D)
~(D; — D)?
_ Y (7(Di — D)+ - &)(Di - D)
- >»YX1(D; - D)2
>¥1(ei — &)(D; — D)
Yy (D - D)2
» We can see that E[7] = 7.

> limy_oo 7 = 7 when conditions for the law of large numbers
are satisfied.

>

=7+

6
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Bivariate regression in practice

Remember that the coefficient 7 tells us the change in Y when
D increases by 1 unit.

It makes more sense when Y is continuous and D is either
binary or continuous.

When Y is binary, we call the regression model the “linear
probability model.”

We interpret 7 as the effect of D on the probability for Y to be
1.

One concern is that the predicted outcome may be beyond the
range of [0, 1].

We can fix this problem by using alternative models such as
Probit or Logit.

But the linear probability model is Ok if you don’t care about
prediction.
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Bivariate regression in practice

» When Y is categorical or a count variable, a 7 units increase in
it is hard to interpret.

» We may respectively use multinomial logit and count models,
such as the Poisson model or the negative binomial model.

» No model is more correct than the others, and you should
choose the one that facilitates your interpretation.

» When D is categorical, it is better to include dummies standing
for each of the category as regressors.

> |t is also common to transform Y to log Y, then

_dlgy _1dv Ay
T dD YdD T Y~

» The coefficient can be interpreted as the change of Y in
percentages as X increases by 1 unit.
» This is known as elasticity in economics.



Bivariate regression in practice

>

When Y may take the value of 0, we replace log Y with
log(Y +1) or log(Y +VvVY?+1).

They behave in very similar ways.

But it is crucial to understand what 0 stands for.

If your thermometer toward Trump is 0, maybe you just hate
him.

If your monthly income is 0, it may suggest you are not on the
labor market.

In the latter case, log(Y + 1) is not appropriate if there are
many Os in data (Chen and Roth 2023).

The change from 0 to 1 (the extensive margin) is very different
from that from 1 to 2 (the intensive margin).

We know that for any positive number ¢,

log(cY + 1) = logc+logY.

The magnitude of the extensive margin effect can be driven by
Y's unit.
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Multivariate regression

> Now, let's consider the multivariate regression model

Y = X5 +¢,
E[E;‘X,‘] = 0,

where Y = (Yl, Yg, ey YN),, X= (Xl,X2, cee ,XN)’, and
e = (e1,€2,...,en)"
» Note that X; is a P x 1 vector, hence X is a N x P matrix.
» In bivariate regression, X; = (1,D;) and 3 = (pu, 7).
» Similarly, we estimate /3 by solving the minimization problem
N

§=argmin (% - X0

i=1
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Multivariate regression

» The first-order condition is

N
QZX:'(Y/'—X?B) =0.

i=1

> It leads to

N -1

= (Zx,x;) <Zx Y) (X'X)~H(XY).

i=1
» Bis clearly a linear estimator.
» The predicted outcome equals X3 = X(X'X)~}(X"Y).
» P = X(X’X)"1X’ is known as the projection matrix.
> It transforms Y to an element in the space spanned by X, Y.
» Each diagonal element, P;j;, is called the leverage of unit J.
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Multivariate regression

> As before, we plug in the regression equation, and obtain

B = (X'X)"HX'Y)
= B+ (X'X)"H(X'e).
> It is straightforward to see that E[3] = 4, and
Var [B] = Var [(X'X)"}(Xz)]
= E[(X'X) 7 (Xee'X)(X'X) Y]
— 0.

> Note that Var [B} is a P x P matrix (the variance-covariance
matrix).
» Hence, 5 — (8 when N — oo.
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Inference in multivariate regression

>

Define the vector of regression residuals as
€= (%1,81,...,én), where &; = Y; — X3
We can estimate the variance of 5 using

Var [B] = (XX) 1 (XEX)(X'X) 7!

where 3 = 22/,

This is known as the sandwich variance estimator.

Since the units are independent to each other, we impose the
constraint that 3 is diagonal, hence X3 X' = SN | £2X;X/.
This is the Eicker-Huber-White (EHW) robust variance
estimator.

Under homoscedasticity, E[¢?|X;] = ¢ for any i, and

Var |B] = o2E [(X'X)71].

The sandwich variance estimator can then be simplified to
&2(X'X) 7, where 62 = 15 SN, &2,
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Inference in multivariate regression

v

It is easy to show that
VNGB —B) = N (o, NVar [5]) .

» Hence, we can construct the 95% confidence interval of any
element in 3 as

[Bp —1.96 % |/ Var B, B, + 1.96 # | | Var [ﬁ“,,” .

In theory, the coverage rate should be 95%.
But in practice, it is usually much lower than that (the
Behrens—Fisher problem).

vy
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Inference in multivariate regression (*)

» We do know that —2=5_ converges to normality at the

Var[ﬂp]
root-N rate.
» But we replace the denominator with an estimate, which
creates complex asymptotics in the statistic.
BBy

£ obeys the
Var[ﬁp]

» When ¢ is normal, we know that

t-distribution.
» Using critical values from the normal distribution causes bias.
> After all, asymptotic distribution is an approximation!
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Inference in multivariate regression (*)

vV v.Yyy

v

Multiple solutions have been proposed (but never welcomed).
We can modify the variance estimate or the critical value.
There are multiple variance estimators.

. ; Var | A N
HC1: multiply Var [5} by s

HC2: replace each &; with \/157'7,3 where Pj; is the (i, i)th

entry of the projection matrix.

HC3: replace each &; with 1_5’)3”.

We can use the critical value from the t-distribution rather
than the normal distribution.

The t-distribution requires researchers to specify the degree of
freedom of the model.

See Imbens and Kolesar (2016) for technical details.
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Hypothesis testing in multivariate regression

> The regression model enables us to test hypothesis regarding a
linear combination of j.

» They usually take the form of RG =r, where Risa R x P
matrix.

» For example, when P = 3 and the null hypothesis is
f1+ B2 =0 and B3 =0,

1 10 0
R_<O 0 1) andr—<0>

» How do we test the null hypothesis that 51 = 8> = 53 =07
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Hypothesis testing in multivariate regression

> Using the asymptotic normality of /3, we know that

VN(RB —R8) = VN(RB —r)
SN (0, NR % Var [5} R’) .

» Therefore, the Wald statistic

W = (R3—r) (R Var 3] R’)*l (RB —r) = x3(R).

» We reject the null hypothesis if W is sufficiently large.
» The Wald test is equivalent to the F-test under
homoscedasticity, as

w

F=— ~F(R,N-P).
R (7 )
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