#### Panel Data Analysis III

#### Ye Wang University of North Carolina at Chapel Hill

Linear Methods in Causal Inference POL1784

#### Review

- The previous class started from introducing the DID estimator.
- It is motivated by the TWFE model when the data have a DID structure.
- But the estimator only needs the assumption of parallel trends and is robust to heterogeneous treatment effects.
- This is not true when the data have a more complex structure.
- The within estimator may generate negative weights for individualistic treatment effects.
- We can fix the problem by not using untreated observations when fitting the model.
- This leads to the idea of counterfactual estimation.

#### The classic factor model

- Remember that in the TWFE model, we assume that  $h_t(\mathbf{U}_i) = \mu + \alpha_i + \xi_t$ .
- Bai (2003) relaxes this assumption to  $h_t(\mathbf{U}_i) = \mathbf{f}'_t \lambda_i$ .
- Both  $\mathbf{f}_t$  and  $\lambda_i$  are *r*-dimensional vectors.
- The number of parameters is  $(N + T) * r \le N * T$ .
- The former is known as factors, and the latter as factor loadings.
- When f<sub>t</sub> = (1, ξ<sub>t</sub>)' and λ<sub>i</sub> = (α<sub>i</sub>, 1)', it boils down to the TWFE model.
- Such a model captures the interaction between variables that vary only over time and only across units.
- E.g., country i's endowments in r different resources and the prices of them in year t.

#### The classic factor model

Let's omit the covariates, then

$$Y_{it} = \mathbf{f}_t' \lambda_i + \varepsilon_{it},$$

• We can write the model in matrices:

$$\mathbf{Y} = \mathbf{F} \Lambda' + \varepsilon.$$

where **Y** is a  $T \times N$  matrix; **F**  $(T \times r)$  represents factors and  $\Lambda$   $(N \times r)$  represents factor loadings.

- Suppose  $\tilde{\mathbf{F}} = \mathbf{F}\mathbf{H}$  and  $\tilde{\Lambda}' = \mathbf{H}^{-1}\Lambda'$ , then  $\mathbf{Y} = \tilde{\mathbf{F}}\tilde{\Lambda}' + \varepsilon$ .
- Some assumptions on the structure of F and Λ are necessary for identification:

$$\frac{\mathbf{F'F}}{T} = \mathbf{I}_r$$

$$\frac{\Lambda'\Lambda}{N} \text{ is diagonal.}$$
There are  $\frac{r(r-1)}{2} + \frac{r(r+1)}{2} = r^2$  restrictions in total.

#### The classic factor model (\*)

• An intuitive idea is to estimate  $\mathbf{F}$  and  $\Lambda$  via OLS and minimize

$$\frac{1}{NT}\sum_{i=1}^{N}\sum_{t=1}^{T}(Y_{it}-\mathbf{f}_{t}^{'}\lambda_{i})^{2}.$$

We can show that it is equivalent to minimizing

$$tr((\mathbf{Y}-\mathbf{F}\Lambda')(\mathbf{Y}-\mathbf{F}\Lambda')'),$$

where tr() is the trace of a matrix.

- ► If we know the value of **F**, we can estimate  $\Lambda$  with  $\Lambda = \mathbf{Y'F}(\mathbf{F'F})^{-1} = \frac{\mathbf{Y'F}}{T}$ .
- The second equality uses the identification constraint.
- Plugging the expression into the objective function, it becomes

$$tr(\mathbf{F}'\mathbf{Y}\mathbf{Y}'\mathbf{F})/T$$

▶ All we need to do is to find **F** that minimizes the expression.

## The classic factor model (\*)

- Bai (2003) shows that F can be found via principal component analysis (PCA) or singular value decomposition (SVD) of the matrix YY'/T.
- In SVD, we find a matrix  $\hat{\mathbf{F}}$  such that

$$\left(\frac{1}{NT}\sum_{i=1}^{N}\mathbf{Y}_{i}\mathbf{Y}_{i}'\right)\hat{\mathbf{F}}=\hat{\mathbf{F}}\mathbf{V}_{NT},$$

where  $\mathbf{V}_{NT}$  is the matrix of singular values.

- ► Bai shows that  $\sqrt{N}(\hat{\mathbf{F}}_t \mathbf{H}'\mathbf{F}_t)$  converges to a normal distribution.
- We are estimating T vectors using  $N \times T$  observations, hence  $\sqrt{N}$  is the best convergence rate we can get.
- Similarly,  $\sqrt{T}(\hat{\Lambda}_i \mathbf{H}^{-1}\Lambda_i)$  converges to a normal distribution.

#### The classic factor model

▶ Bai (2009) considers the DGP with covariates:

$$\mathbf{Y} = \mathbf{X}\beta + \mathbf{F}\Lambda' + \varepsilon.$$

 Knowing β, we can calculate residuals and estimate F and Λ as before; knowing F and Λ, we can estimate β via

$$\hat{\beta} = \left(\sum_{i=1}^{N} \mathbf{X}_{i}^{\prime} \mathbf{Q}_{\hat{\mathbf{F}}} \mathbf{X}_{i}\right)^{-1} \left(\sum_{i=1}^{N} \mathbf{X}_{i}^{\prime} \mathbf{Q}_{\hat{\mathbf{F}}} \mathbf{Y}_{i}\right)$$

where  $Q_{\hat{F}}$  is the residual-making matrix of  $\hat{F}$ .

- We can start from some initial values and iterate this process until convergence.
- Bai shows that √NT(β̂ − β) converges to a normal distribution that may not concentrate around zero.
- The bias diminishes when heteroskedasticity and autocorrelation are absent in either dimension.

- Abadie, Diamond, and Hainmueller (2010) propose the synthetic control (SC) method for case studies.
- It assumes that there are N untreated units and a single treated unit (i = 1).
- ► There are T<sub>0</sub> pre-treatment periods and T<sub>1</sub> post-treatment periods.
- The untreated potential outcome obeys the classic factor model as in Bai (2003) or Bai (2009).
- We are interested in is the treatment effect on unit 1 in any period t > T₀:

$$\tau_{1t} = Y_{1t}(1) - Y_{1t}(0).$$

- Abadie, Diamond, and Hainmueller (2010) show that we don't need to estimate factors or factor loadings directly in this case.
- Instead, they propose a weighting algorithm to predict the counterfactual of the treated unit, Y<sub>1t</sub>(0).
- Intuitively, we weight the untreated units to construct a synthetic treated unit.
- The weights are calculated to balance the pre-treatment trajectory.





► We attempt to find a group of weights {w<sub>i</sub>}<sup>N+1</sup><sub>i=2</sub> which sum to one such that

$$\sum_{i=2}^{N+1} w_i Y_{it} = Y_{1t}$$

for any  $1 \leq t \leq T_0$ .

- We require the treated unit to lie in the "convex hull" of the untreated ones.
- The predicted counterfactual for unit 1 in period  $t > T_0$  is

$$\hat{Y}_{1t}(0) = \sum_{i=2}^{N+1} w_i Y_{it}.$$

• Hence, we can estimate  $\tau_{1t}$  by  $\hat{\tau}_{1t} = Y_{1t}(1) - \hat{Y}_{1t}(0)$ .

- In practice, we search for weights {w<sub>i</sub>}<sup>N+1</sup><sub>i=2</sub> to minimize the distance between the predictors.
- Denote  $\mathbf{Y}_1^0 = (Y_{11}, Y_{12}, \dots, Y_{1T_0})'$ ,  $\mathbf{W} = (w_2, w_3, \dots, w_{N+1})'$ and

$$\mathbf{Y}_{0}^{0} = \begin{pmatrix} Y_{21} & Y_{31} & \dots & Y_{N+1,1} \\ Y_{22} & Y_{32} & \dots & Y_{N+1,2} \\ \dots & \dots & \ddots & \dots \\ Y_{2T_{0}} & Y_{3T_{0}} & \dots & Y_{N+1,T_{0}} \end{pmatrix}$$

We minimize

$$||\mathbf{Y}_{1}^{0} - \mathbf{Y}_{0}^{0}\mathbf{W}||_{\mathbf{V}}$$
$$= \sqrt{(\mathbf{Y}_{1}^{0} - \mathbf{Y}_{0}^{0}\mathbf{W})'\mathbf{V}(\mathbf{Y}_{1}^{0} - \mathbf{Y}_{0}^{0}\mathbf{W})}$$

Note that

$$Y_{1t}(0) - \hat{Y}_{1t}(0) = \mathbf{f}'_t(\lambda_1 - \sum_{i=2}^{N+1} w_i \lambda_i) + \sum_{i=2}^{N+1} w_i(\varepsilon_{1t} - \varepsilon_{it})$$

for any  $t > T_0$ . • Denote  $\mathbf{F}_{T_0} = (\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_{T_0})'$ , then

$$\begin{pmatrix} 0\\0\\...\\0 \end{pmatrix} = \begin{pmatrix} Y_{11}(0) - \hat{Y}_{11}(0)\\Y_{12}(0) - \hat{Y}_{12}(0)\\...\\Y_{17_0}(0) - \hat{Y}_{17_0}(0) \end{pmatrix} = \mathbf{F}_{T_0}(\lambda_1 - \sum_{i=2}^{N+1} w_i \lambda_i) + \sum_{i=2}^{N+1} w_i \left( \begin{pmatrix} \varepsilon_{11}\\\varepsilon_{12}\\...\\\varepsilon_{1T_0} \end{pmatrix} - \begin{pmatrix} \varepsilon_{i1}\\\varepsilon_{i2}\\...\\\varepsilon_{iT_0} \end{pmatrix} \right)$$

► Multiplying f'<sub>t</sub>(F'<sub>T0</sub>F<sub>T0</sub>)<sup>-1</sup>F'<sub>T0</sub> to both sides of the second equation and subtracting it from the first one, we have

$$Y_{1t}(0) - \hat{Y}_{1t}(0) = \sum_{i=2}^{N+1} w_i (\varepsilon_{1t} - \varepsilon_{it})$$
$$- \mathbf{f}'_t (\mathbf{F}'_{T_0} \mathbf{F}_{T_0})^{-1} \mathbf{F}'_{T_0} \sum_{i=2}^{N+1} w_i \left( \begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{12} \\ \cdots \\ \varepsilon_{1T_0} \end{pmatrix} - \begin{pmatrix} \varepsilon_{i1} \\ \varepsilon_{i2} \\ \cdots \\ \varepsilon_{iT_0} \end{pmatrix} \right)$$

We rely on Rosenthal's inequality to show that

$$\mathbf{f}_t'(\mathbf{F}_{T_0}'\mathbf{F}_{T_0})^{-1}\mathbf{F}_{T_0}'\sum_{i=2}^{N+1}w_i\begin{pmatrix}\varepsilon_{i1}\\\varepsilon_{i2}\\\cdots\\\varepsilon_{iT_0}\end{pmatrix}\to 0.$$

- It is a case-study method and the estimate has no asymptotic distribution.
- We have only one treated observation.
- We rely on a permutation test for statistical inference.
- It is similar to a placebo test: we replace the treated unit with a randomly selected unit from the control group and estimate the effect on it.
- The permutation test differs from Fisher's randomization test since we do not know the treatment assignment algorithm.
- It assumes that each unit has the same probability of being treated.
- There are approaches to construct non-asymptotic confidence intervals but they tend to be wide.

#### Augmented synthetic control

- The classic synthetic control method is built upon weighting.
- A natural idea is to improve its efficiency by combining weighting with regression.
- ▶ We find weights  $\{w_i\}_{i=2}^{N+1}$  as before, and fit regression models of  $Y_{it}$   $(t > T_0)$  on  $(Y_{i1}, Y_{i2}, \dots, Y_{iT_0})$ .
- Denote the estimated coefficients as  $\hat{\beta} = (\hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_{T_0})$ .
- The predicted counterfactual takes the form of

$$\hat{Y}_{1t}(0) = \sum_{i=2}^{N+1} \hat{w}_i Y_{it} + \sum_{s=1}^{T_0} \hat{\beta}_s \left( Y_{1s} - \sum_{i=2}^{N+1} \hat{w}_i Y_{is} \right).$$

We can fit a ridge regression to further improve precision by allowing for extrapolation.

#### Generalized synthetic control

- In practice, most data include more than one treated unit.
- In theory, we can find a unique set of weights for each treated unit.
- But it could be more straightforward to estimate factors and factor loadings.
- > Xu (2017) considers the following model:

$$Y_{it}(0) = \mathbf{f}'_t \lambda_i + \mathbf{X}'_{it} \beta + \varepsilon_{it},$$
  
$$Y_{it}(1) = Y_{it}(0) + \tau_{it}.$$

- As in counterfactual estimation, we estimate f<sub>t</sub>, λ<sub>i</sub>, and β using untreated observations.
- Then, we generate predictions of the counterfactual and estimate the ATT with:

$$\widehat{\tau}_{ATT} = rac{1}{|\mathcal{M}|} \sum_{(i,t)\in\mathcal{M}} \left(Y_{it} - \hat{Y}_{it}(0)\right).$$

#### Matrix completion

- A they et al. (2018) suggest that we should directly estimate missing elements in the matrix L = {Y<sub>it</sub>(0)}<sub>N×T</sub>.
- ▶ We solve the following matrix completion (MC) problem:

$$\widehat{\mathbf{L}} = \arg\min_{\mathbf{L}} \left[ \sum_{(i,t) \in \mathcal{O}} \frac{(Y_{it} - L_{it})^2}{|\mathcal{O}|} + \lambda_L \|\mathbf{L}\| \right],$$

- The estimation relies on a different iteration algorithm.
- Athey et al. (2018) prove that the obtained L is asymptotically unbiased for L.

# IFE or MC?

- MC penalizes the magnitude rather than the number of singular values (soft impute vs. hard impute).
- Liu, Wang, and Xu (2020) uses simulation to show that matrix completion performs better when the DGP contains many weak factors.



## SCDID

- Arkhangelsky et al. (2019) propose a different idea to use the factors.
- We solve the following problem:

$$\arg\min_{\tau,\mu,\alpha,\xi}\sum_{i=1}^{N}\sum_{t=1}^{T}(Y_{it}-\mu-\alpha_i-\xi_t-\tau_{it}D_{it})\mathbf{f}_t'\lambda_i.$$

- They also introduce weighting estimators for  $\mathbf{f}'_t$  and  $\lambda_i$ .
- They call this method "synthetic difference-in-differences (SCDID)".
- It works when the data have a structure of staggered adoption.

- Let's examine the study in Anzia and Berry (2011).
- The argument is that female legislators face more structural barriers than their male counterparts.
- Once elected, they will be more competent and perform better.
- The data include 700 districts in the US over 21 years.
- $D_{it} = 1$  if there is a female legislator from district *i* in year *t*.
- ► The outcome is measured by the amount of federal spending a legislator can secure for their district in year *t*.



0.2 Effect of D on Y 0.0 82 -0.2 -5 -10 0 5 Time since the Treatment Began



Estimated ATT (FEct)

Estimated ATT (FEct)





Estimated ATT (FEct)



#### Estimated ATT (FEct)

Estimated ATT (FEct)



## Manifold learning

- In either the TWFE or factor models, we learn the unobservables from observable variables.
- This is the idea of manifold learning: we assume that the unobservable variable is a low-dimensional manifold embedded in a high-dimensional space.
- ▶ Feng (2020) formally develops this idea for panel data analysis.
- He assumes that  $Y_{it} = f_t(\lambda_i) + \varepsilon_{it}$ .
- To estimate \u03c6<sub>i</sub>, we first match each unit i to K nearest neighbors.
- Next, we estimate  $\lambda_i$  via SVD on the K + 1 outcome histories.
- It is a local factor model.
- Then, we control  $\hat{\lambda}_i$  in a doubly robust estimator.

#### References I

Abadie, Alberto, Alexis Diamond, and Jens Hainmueller. 2010.
"Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program." *Journal of the American Statistical Association* 105 (490): 493–505.

- Anzia, Sarah F, and Christopher R Berry. 2011. "The Jackie (and Jill) Robinson Effect: Why Do Congresswomen Outperform Congressmen?" *American Journal of Political Science* 55 (3): 478–93.
- Arkhangelsky, Dmitry, Susan Athey, David A Hirshberg, Guido W Imbens, and Stefan Wager. 2019. "Synthetic Difference in Differences." National Bureau of Economic Research.
- Athey, Susan, Mohsen Bayati, Nikolay Doudchenko, Guido Imbens, and Khashayar Khosravi. 2018. "Matrix Completion Methods for Causal Panel Data Models." National Bureau of Economic Research.

#### References II

Bai, Jushan. 2003. "Inferential Theory for Factor Models of Large Dimensions." *Econometrica* 71 (1): 135–71.

- ———. 2009. "Panel Data Models with Interactive Fixed Effects." Econometrica 77 (4): 1229–79.
- Feng, Yingjie. 2020. "Causal Inference in Possibly Nonlinear Factor Models." arXiv Preprint arXiv:2008.13651.
- Liu, Licheng, Ye Wang, and Yiqing Xu. 2020. "A Practical Guide to Counterfactual Estimators for Causal Inference with Time-Series Cross-Sectional Data." *Available at SSRN 3555463*.
- Xu, Yiqing. 2017. "Generalized Synthetic Control Method: Causal Inference with Interactive Fixed Effects Models." *Political Analysis* 25 (1): 57–76.