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Review

I The previous class started from introducing the DID estimator.
I It is motivated by the TWFE model when the data have a DID

structure.
I But the estimator only needs the assumption of parallel trends

and is robust to heterogeneous treatment effects.
I This is not true when the data have a more complex structure.
I The within estimator may generate negative weights for

individualistic treatment effects.
I We can fix the problem by not using untreated observations

when fitting the model.
I This leads to the idea of counterfactual estimation.
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The classic factor model

I Remember that in the TWFE model, we assume that
ht(Ui ) = µ+ αi + ξt .

I Bai (2003) relaxes this assumption to ht(Ui ) = f ′
tλi .

I Both ft and λi are r -dimensional vectors.
I The number of parameters is (N + T ) ∗ r ≤ N ∗ T .
I The former is known as factors, and the latter as factor

loadings.
I When ft = (1, ξt)′ and λi = (αi , 1)′, it boils down to the

TWFE model.
I Such a model captures the interaction between variables that

vary only over time and only across units.
I E.g., country i ’s endowments in r different resources and the

prices of them in year t.
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The classic factor model
I Let’s omit the covariates, then

Yit = f ′
tλi + εit ,

I We can write the model in matrices:

Y = FΛ′ + ε.

where Y is a T ×N matrix; F (T × r) represents factors and Λ
(N × r) represents factor loadings.

I Suppose F̃ = FH and Λ̃′ = H−1Λ′, then Y = F̃Λ̃′ + ε.
I Some assumptions on the structure of F and Λ are necessary

for identification:
F′F
T = Ir

Λ′Λ
N is diagonal.

I There are r(r−1)
2 + r(r+1)

2 = r2 restrictions in total.
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The classic factor model (*)
I An intuitive idea is to estimate F and Λ via OLS and minimize

1
NT

N∑
i=1

T∑
t=1

(Yit − f ′
tλi )2.

I We can show that it is equivalent to minimizing

tr((Y− FΛ′)(Y− FΛ′)′),

where tr() is the trace of a matrix.
I If we know the value of F, we can estimate Λ with

Λ = Y′F(F′F)−1 = Y′F
T .

I The second equality uses the identification constraint.
I Plugging the expression into the objective function, it becomes

tr(F′YY′F)/T

I All we need to do is to find F that minimizes the expression.
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The classic factor model (*)

I Bai (2003) shows that F can be found via principal component
analysis (PCA) or singular value decomposition (SVD) of the
matrix YY′/T .

I In SVD, we find a matrix F̂ such that(
1

NT

N∑
i=1

YiY
′
i

)
F̂ = F̂VNT ,

where VNT is the matrix of singular values.
I Bai shows that

√
N(F̂t −H′Ft) converges to a normal

distribution.
I We are estimating T vectors using N × T observations, hence√

N is the best convergence rate we can get.
I Similarly,

√
T (Λ̂i −H−1Λi ) converges to a normal distribution.
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The classic factor model
I Bai (2009) considers the DGP with covariates:

Y = Xβ + FΛ′ + ε.

I Knowing β, we can calculate residuals and estimate F and Λ as
before; knowing F and Λ, we can estimate β via

β̂ =
( N∑

i=1
X′

iQF̂Xi

)−1( N∑
i=1

X′
iQF̂Yi

)

where QF̂ is the residual-making matrix of F̂.
I We can start from some initial values and iterate this process

until convergence.
I Bai shows that

√
NT (β̂ − β) converges to a normal

distribution that may not concentrate around zero.
I The bias diminishes when heteroskedasticity and

autocorrelation are absent in either dimension.
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Synthetic control

I Abadie, Diamond, and Hainmueller (2010) propose the
synthetic control (SC) method for case studies.

I It assumes that there are N untreated units and a single
treated unit (i = 1).

I There are T0 pre-treatment periods and T1 post-treatment
periods.

I The untreated potential outcome obeys the classic factor
model as in Bai (2003) or Bai (2009).

I We are interested in is the treatment effect on unit 1 in any
period t > T0:

τ1t = Y1t(1)− Y1t(0).
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Synthetic control

I Abadie, Diamond, and Hainmueller (2010) show that we don’t
need to estimate factors or factor loadings directly in this case.

I Instead, they propose a weighting algorithm to predict the
counterfactual of the treated unit, Y1t(0).

I Intuitively, we weight the untreated units to construct a
synthetic treated unit.

I The weights are calculated to balance the pre-treatment
trajectory.
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Synthetic control

I Ideally, we would like to see a picture like this:
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Synthetic control

I We attempt to find a group of weights {wi}N+1
i=2 which sum to

one such that
N+1∑
i=2

wiYit = Y1t

for any 1 ≤ t ≤ T0.
I We require the treated unit to lie in the “convex hull” of the

untreated ones.
I The predicted counterfactual for unit 1 in period t > T0 is

Ŷ1t(0) =
N+1∑
i=2

wiYit .

I Hence, we can estimate τ1t by τ̂1t = Y1t(1)− Ŷ1t(0).
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Synthetic control

I In practice, we search for weights {wi}N+1
i=2 to minimize the

distance between the predictors.
I Denote Y0

1 = (Y11,Y12, . . . ,Y1T0)′, W = (w2,w3, . . . ,wN+1)′
and

Y0
0 =


Y21 Y31 . . . YN+1,1
Y22 Y32 . . . YN+1,2

· · · · · · . . . · · ·
Y2T0 Y3T0 . . . YN+1,T0


I We minimize

||Y0
1 − Y0

0W||V

=
√

(Y0
1 − Y0

0W)′V(Y0
1 − Y0

0W)
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Synthetic control
I Note that

Y1t(0)− Ŷ1t(0) = f ′
t(λ1 −

N+1∑
i=2

wiλi ) +
N+1∑
i=2

wi (ε1t − εit)

for any t > T0.
I Denote FT0 = (f1, f2, . . . , fT0)′, then

0
0
. . .
0

 =


Y11(0)− Ŷ11(0)
Y12(0)− Ŷ12(0)

. . .

Y1T0(0)− Ŷ1T0(0)

 = FT0(λ1 −
N+1∑
i=2

wiλi )

+
N+1∑
i=2

wi



ε11
ε12
. . .
ε1T0

−

εi1
εi2
. . .
εiT0



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Synthetic control
I Multiplying f ′

t(F′
T0

FT0)−1F′
T0

to both sides of the second
equation and subtracting it from the first one, we have

Y1t(0)− Ŷ1t(0) =
N+1∑
i=2

wi (ε1t − εit)

− f ′
t(F′

T0FT0)−1F′
T0

N+1∑
i=2

wi



ε11
ε12
. . .
ε1T0

−

εi1
εi2
. . .
εiT0




I We rely on Rosenthal’s inequality to show that

f ′
t(F′

T0FT0)−1F′
T0

N+1∑
i=2

wi


εi1
εi2
. . .
εiT0

→ 0.
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Synthetic control

I It is a case-study method and the estimate has no asymptotic
distribution.

I We have only one treated observation.
I We rely on a permutation test for statistical inference.
I It is similar to a placebo test: we replace the treated unit with

a randomly selected unit from the control group and estimate
the effect on it.

I The permutation test differs from Fisher’s randomization test
since we do not know the treatment assignment algorithm.

I It assumes that each unit has the same probability of being
treated.

I There are approaches to construct non-asymptotic confidence
intervals but they tend to be wide.
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Augmented synthetic control

I The classic synthetic control method is built upon weighting.
I A natural idea is to improve its efficiency by combining

weighting with regression.
I We find weights {wi}N+1

i=2 as before, and fit regression models
of Yit (t > T0) on (Yi1,Yi2, . . . ,YiT0).

I Denote the estimated coefficients as β̂ = (β̂1, β̂2, . . . , β̂T0).
I The predicted counterfactual takes the form of

Ŷ1t(0) =
N+1∑
i=2

ŵiYit +
T0∑

s=1
β̂s

(
Y1s −

N+1∑
i=2

ŵiYis

)
.

I We can fit a ridge regression to further improve precision by
allowing for extrapolation.
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Generalized synthetic control
I In practice, most data include more than one treated unit.
I In theory, we can find a unique set of weights for each treated

unit.
I But it could be more straightforward to estimate factors and

factor loadings.
I Xu (2017) considers the following model:

Yit(0) = f ′
tλi + X′itβ + εit ,

Yit(1) = Yit(0) + τit .

I As in counterfactual estimation, we estimate ft , λi , and β
using untreated observations.

I Then, we generate predictions of the counterfactual and
estimate the ATT with:

τ̂ATT = 1
|M|

∑
(i ,t)∈M

(
Yit − Ŷit(0)

)
.
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Matrix completion

I Athey et al. (2018) suggest that we should directly estimate
missing elements in the matrix L = {Yit(0)}N×T .

I We solve the following matrix completion (MC) problem:

L̂ = argmin
L

 ∑
(i ,t)∈O

(Yit − Lit)2

|O|
+ λL‖L‖

 ,
I The estimation relies on a different iteration algorithm.
I Athey et al. (2018) prove that the obtained L̂ is asymptotically

unbiased for L.
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IFE or MC?
I MC penalizes the magnitude rather than the number of

singular values (soft impute vs. hard impute).
I Liu, Wang, and Xu (2020) uses simulation to show that matrix

completion performs better when the DGP contains many weak
factors.
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SCDID

I Arkhangelsky et al. (2019) propose a different idea to use the
factors.

I We solve the following problem:

arg min
τ,µ,α,ξ

N∑
i=1

T∑
t=1

(Yit − µ− αi − ξt − τitDit)f ′
tλi .

I They also introduce weighting estimators for f ′
t and λi .

I They call this method “synthetic difference-in-differences
(SCDID)”.

I It works when the data have a structure of staggered adoption.
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Factor models: application

I Let’s examine the study in Anzia and Berry (2011).
I The argument is that female legislators face more structural

barriers than their male counterparts.
I Once elected, they will be more competent and perform better.
I The data include 700 districts in the US over 21 years.
I Dit = 1 if there is a female legislator from district i in year t.
I The outcome is measured by the amount of federal spending a

legislator can secure for their district in year t.
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Factor models: application
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Factor models: application
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Factor models: application

Placebo test p−value: 0.050

Placebo equivalence test p−value: 0.227
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Factor models: application
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Factor models: application

Placebo test p−value: 0.159

Placebo equivalence test p−value: 0.099
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Factor models: application

Carryover effect test p−value: 0.673

Carryover effect equivalence test p−value: 0.066
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Factor models: application
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Manifold learning

I In either the TWFE or factor models, we learn the
unobservables from observable variables.

I This is the idea of manifold learning: we assume that the
unobservable variable is a low-dimensional manifold embedded
in a high-dimensional space.

I Feng (2020) formally develops this idea for panel data analysis.
I He assumes that Yit = ft(λi ) + εit .
I To estimate λi , we first match each unit i to K nearest

neighbors.
I Next, we estimate λi via SVD on the K + 1 outcome histories.
I It is a local factor model.
I Then, we control λ̂i in a doubly robust estimator.
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