Sets and Functions

Ye Wang University of North Carolina at Chapel Hill

Mathematics and Statistics For Political Research POLI783

Sets

- Set theory is the foundation of modern mathematics.
- ▶ A set *S* is a collection of whatever elements.
- Whatever you want to study can be included in a set.
- ► E.g., {42}, {*Ye*, *Jaime*}, {0, 1, 2, 3, ...}.
- ▶ We say $x \in S$ if an element x belongs to S.
- We often define a set using conditions: $S = \{x : x \text{ is a US senator}\}.$
- ► Some sets we will often use: N, Z, Q, R.
- ▶ The number of elements in S is called its cardinality, |S|.
- It could be finite or infinite.

Sets

- ▶ If |S| = 0: empty set; if |S| = 1: singleton; if $|S| = |\mathbb{N}|$: countable set; if $|S| > |\mathbb{N}|$: uncountable set.
- ▶ Is \mathbb{Q} a countable set? How about \mathbb{R} ?
- We can prove such propositions using Cantor's diagonal argument.
- ▶ Hilbert's first problem (continuum hypothesis): Is there a set $\mathbb S$ such that $|\mathbb N|<|\mathbb S|<|\mathbb R|$?
- Kurt Godel and Paul Cohen: it cannot be proved under the popular axiomatic system.
- ▶ S_1 is a subset of S if for any $x \in S_1$, $x \in S$.
- ▶ We denote it as $S_1 \subset S$.
- ► The collection of all subsets of a set *S* is called the power set and denoted as 2^S.
- ▶ What is the power set of { *Ye*, *Jaime*}?

Operations on sets

- We can conduct operations on sets.
- Consider two sets A and B.
- ▶ Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}.$
- ▶ Intersection: $A \cap B = \{x : x \in A \text{ and } x \in B\}.$
- ▶ Complement: $A^c = \{x : x \notin A\}$.
- ▶ Difference: $A \setminus B = \{x : x \in A \text{ and } x \notin A \cap B\}.$
- A useful tool: Venn diagram.

Operations on sets

- From their definitions, we can see the connection between set operations and logical operations.
- Union OR; Intersection AND; Complement NOT; Subset -IMPLIES.
- Let's look at several properties of set operations.
- ▶ Commutative Laws: $A \cup B = B \cup A$, $A \cap B = B \cap A$.
- Associative Laws: $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$.
- ▶ Distributive Laws: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- ▶ De Morgan's laws: $(A \cup B)^c = A^c \cap B^c$, $(A \cap B)^c = A^c \cup B^c$.

Operations on sets

- Consider an example.
- ► A = {Qualtrics, Google Forms, Excel}: tools for data collection; B = {Excel, R, Python, Stata}: tools for data analysis; C = {Word, R, Latex}: tools for writing.
- ► The universal set is

 $\{Qualtrics, Google\ Forms, Excel, R, Python, Stata, Word, Latex\}.$

Apply these laws to the three sets.

Function: definition

- ► The relationship between two sets can be represented by a function/mapping.
- For two sets A and B, a function f() assigns each $x \in A$ to a unique $f(x) = y \in B$.
- ▶ We denote it as $f: A \rightarrow B$.
- ▶ A is the domain of f, while B is the codomain of f.
- \triangleright y is x's image in B, and x is y's inverse image.
- ▶ The collection of each x's image is the range of f().
- The range is a subset of the codomain.

Common functions

- ▶ Linear function: y = a + bx.
- Quadratic function: $y = ax^2 + bx + c$.
- Power function: $y = ax^b$.
- Exponential function: $y = e^x$.
- ▶ Logarithmic function: $y = \log(x)$.
- ► Trigonometric functions: $y = \sin(x)$, $y = \cos(x)$, and $y = \tan(x)$.
- What are the domain and range for each function?

Composite function

- ▶ We can apply a function to the output of another function.
- ightharpoonup E.g., $x \to a + bx \to e^{a+bx}$.
- $f_1(x) = a + bx$, $f_2(a + bx) = e^{a+bx}$.
- We write it as $f_1 \circ f_2(x) = e^{a+bx}$.
- $f_1 \circ f_2(x)$ is called a composite function.
- ► E.g., voter's preference votes electoral results.

Bijective

- ▶ We say f is surjective if any $y \in B$ has an inverse image in A.
- ▶ f is injective if each element in the range has one inverse image in A.
- *f* is bijective if it is injective and surjective.
- In the following examples, is the function injective, surjective, or bijective?
 - ▶ Voter ID Voter profile
 - Candidate ID Candidate name
 - Department University

Inverse function

For a bijective function, we can define its inverse function $f^{-1}()$:

If
$$f(x) = y$$
, then $f^{-1}(y) = x$.

- ▶ The inverse function cancels whatever the function does.
- It means that $f \circ f^{-1}(x) = f^{-1} \circ f(x) = x$.
- E.g., $e^{\log(x)} = \log(e^x) = x$.

Example I: production function

- ▶ In economics, scholars use production functions to describe the relationship between input and output in production.
- ▶ Typically, we assume that the product y is a function of two variables, labor (L) and capital (K).
- ▶ The function can be expressed as y = f(K, L).
- ▶ Linear production function: y = aK + bL.
- ▶ Leontief production function: $y = min\{aK, bL\}$.
- ► Cobb-Douglas production function: $y = AK^bL^c$.
- ▶ Equivalently, $\log y = \log A + b \log K + c \log L$.

Example II: electoral system

- ▶ An electoral system can be seen as a function.
- ▶ It maps vote shares of parties/candidates to the electoral result.
- ► Let's consider several systems: plurality, PR, two-round runoff, Borda count.
- ▶ How do we express them as functions?
- Are they injective, surjective, or bijective?