Observational Studies

Ye Wang University of North Carolina at Chapel Hill

Linear Methods in Causal Inference POLI784

Review

- ▶ We can increase the efficiency of estimating the SATE via block randomization.
- ▶ The probability of being treated can be different across blocks.
- ▶ If so, covariates that determine the blocks become confounders.
- We should either estimate the CATEs across the blocks and aggregate them, or adjust the probability of being treated for each unit.
- ▶ When an entire cluster is assigned to the treatment status, units within the cluster are dependent on each other.
- ▶ We need to account for the uncertainty using clustered standard error.

From experiments to observational studies

- Causal identification hinges on randomization of the treatment.
- ► The method of difference is not feasible due to the curse of dimensionality.
- ▶ If the treatment assignment is (conditionally) randomized, all the confounders are balanced in expectation.
- ▶ The same idea applies to observational studies.
- ► The key is to derive credible identification assumptions based on our substantive knowledge.
- The identification assumptions should assert that the treatment is independent to the potential outcomes conditional on certain variables.
- ► Their validity depends on our understanding of the treatment assignment mechanism.

Uniqueness of observational studies

- ▶ In observational studies, we don't know the exact treatment assignment mechanism.
- It could be a real experiment implemented by a third party.
- E.g., the Brazilian government conducts auditing on a randomly selected set of municipalities.
- ▶ We know there is something at random, but not the probability of being treated for each unit.
- ▶ Therefore, we have two tasks in observational studies:
 - clarify the source of randomness (the identification assumption), and
 - estimate the treatment assignment mechanism (based on structural restrictions).
- The first should be supported by our substantive knowledge (design of the study).
- ▶ The second is a statistical problem.
- We should separate these two tasks when evaluating or conducting a study.

In observational studies, it is usually difficult to argue that

$$D_i \perp \{Y_i(0), Y_i(1)\}.$$

- It could be satisfied in certain scenarios.
- ▶ More commonly, we assume that

$$D_i \perp \{Y_i(0), Y_i(1)\} | \mathbf{X}_i \text{ (unconfoundedness)},$$

 $0 < P(D_i = 1 | \mathbf{X}_i) < 1 \text{ (positivity)}.$

- ► The two parts altogether is called strong ignorability, conditional exogeneity, or exchangeability.
- Note that positivity is automatically satisfied in experiments but not in observational studies.

Strong ignorability is sufficient for causal identification:

$$E[Y_i(d)] = E[E[Y_i(d) \mid \mathbf{X}_i]]$$

$$= E[E[Y_i(d) \mid D_i = d, \mathbf{X}_i]]$$

$$= E[E[Y_i \mid D_i = d, \mathbf{X}_i]]$$

- Note that $E[Y_i \mid D_i = d, \mathbf{X}_i]$ does not include any potential outcomes.
- Moreover,

$$\tau = E[Y_i(1)] - E[Y_i(0)]$$

= $E[E[Y_i \mid D_i = 1, \mathbf{X}_i] - E[Y_i \mid D_i = 0, \mathbf{X}_i]].$

- ► The assumptions are exactly what we make in block randomization.
- When analyzing an observational study under these two assumptions, we actually assume that the data are generated by a hypothetical block randomization.
- ► There may not be actual blocks when **X**_i include continuous variables.
- We may know the variables used for blocking but not the assignment mechanism.
- Remember that we have two approaches to estimate the ATE in blocking experiments.
- ▶ We either estimate the CATEs across blocks and aggregate them, or weight each unit with the probability of being treated.
- ► Each approach has a regression representation.

- ► Hence, in an observational study under the two assumptions, we can control the covariates by
 - 1. classify observations into groups defined by the covariates,
 - 2. try to estimate the probability of being treated,
 - 3. direct model the relationship between Y_i and (D_i, \mathbf{X}_i) .
- The first approach leads to matching,
- ▶ The second one leads to weighting.
- The third one leads to regression.
- They are equivalent in block randomization but not in observational studies due to difference in structural restrictions.

The role of the propensity score

- ▶ We have seen that the first two approaches are both valid in block randomization.
- ▶ If we know the probability of being treated, we don't need the blocks formed by the covariates.
- In other words, if we can control the difference in the probability of being treated, we have controlled for the difference in covariates.
- ► This conclusion is first reached by Rosenbaum and Rubin (1983) in observational studies.
- ▶ They call the probability of being treated, $g(\mathbf{X}_i)$, the propensity score.
- ▶ They show that under strong ignorability,

$$D_i \perp \{Y_i(0), Y_i(1)\}|g(\mathbf{X}_i).$$

The role of the propensity score (*)

 First note that propensity score is a balancing score in the sense that

$$D_i \perp \mathbf{X}_i | g(\mathbf{X}_i)$$
.

The reason is that

$$P[D_i = 1 | \mathbf{X}_i, g(\mathbf{X}_i)] = P[D_i = 1 | \mathbf{X}_i] = g(\mathbf{X}_i),$$

$$P[D_i = 1 | g(\mathbf{X}_i)] = E[D_i | g(\mathbf{X}_i)]$$

$$= E[E[D_i | g(\mathbf{X}_i), \mathbf{X}_i] | g(\mathbf{X}_i)]$$

$$= E[P[D_i = 1 | \mathbf{X}_i, g(\mathbf{X}_i)] | g(\mathbf{X}_i)]$$

$$= E[g(\mathbf{X}_i) | g(\mathbf{X}_i)] = g(\mathbf{X}_i).$$

The role of the propensity score (*)

Then we can see that

$$P[D_{i} = 1 | Y_{i}(0), Y_{i}(1), g(\mathbf{X}_{i})]$$

$$= E[D_{i} | Y_{i}(0), Y_{i}(1), g(\mathbf{X}_{i})]$$

$$= E[E[D_{i} | Y_{i}(0), Y_{i}(1), g(\mathbf{X}_{i}), \mathbf{X}_{i}] | Y_{i}(0), Y_{i}(1), g(\mathbf{X}_{i})]$$

$$= E[E[D_{i} | g(\mathbf{X}_{i}), \mathbf{X}_{i}] | Y_{i}(0), Y_{i}(1), g(\mathbf{X}_{i})]$$

$$= E[E[D_{i} | g(\mathbf{X}_{i})] | Y_{i}(0), Y_{i}(1), g(\mathbf{X}_{i})]$$

$$= E[D_{i} | g(\mathbf{X}_{i})]$$

$$= P[D_{i} = 1 | g(\mathbf{X}_{i})]$$

► The propensity score, as a uni-dimensional variable, contains all the information in the high-dimensional covariates **X**_i.

Estimate the propensity score

- ▶ This is a prediction problem.
- ▶ We want to find a $\hat{g}(\mathbf{X}_i)$ that approximates $g(\mathbf{X}_i)$ well.
- It is common for researchers to impose structural restrictions on $g(\cdot)$, such as

$$g(\mathbf{X}_i) = \frac{e^{\mathbf{X}_i'\beta}}{1 + e^{\mathbf{X}_i'\beta}}.$$

- This is known as the logistic model.
- ▶ It is ensured that $\hat{g}(\mathbf{X}_i) \in [0, 1]$.
- ▶ The model is a transformation of the linear model $\mathbf{X}_{i}^{\prime}\beta$.
- ▶ The transformation is known as the link function.
- We estimate the parameter β via maximum likelihood estimation.

Estimate the response surface

- ▶ We often call the two conditional expectations $E[Y_i|D_i=1, \mathbf{X}_i]$ and $E[Y_i|D_i=0, \mathbf{X}_i]$ the response surfaces.
- ▶ We denote them as $m_1(\mathbf{X}_i)$ and $m_0(\mathbf{X}_i)$.
- ▶ If we can estimate them consistently, then an estimator for the SATE is

$$\hat{ au} = rac{1}{N} \sum_{i=1}^N [\hat{m}_1(\mathbf{X}_i) - \hat{m}_0(\mathbf{X}_i)].$$

We may impose the structural restriction that both $m_1(\mathbf{X}_i)$ and $m_0(\mathbf{X}_i)$ are linear functions, hence

$$\begin{split} m_1(\mathbf{X}_i) &= \tau_1 + \mathbf{X}_i' \beta_1, \\ m_0(\mathbf{X}_i) &= \tau_0 + \mathbf{X}_i' \beta_0, \\ \hat{\tau} &= \frac{1}{N} \sum_{i=1}^N [\hat{\tau}_1 - \hat{\tau}_0 + \mathbf{X}_i' \hat{\beta}_1 - \mathbf{X}_i' \hat{\beta}_0]. \end{split}$$

Summary

- ► We call either the propensity score or the response surface "nuisance parameters."
- ► The target parameter is the SATE while the nuisance parameters are just intermediates we have to estimate.
- ► The first two approaches requires us to model the relationship between *D_i* and **X**_i.
- ▶ The third one requires a model for the relationship between Y_i and both D_i and \mathbf{X}_i .
- We can combine the these approaches to achieve more robust estimates
- ▶ But the pre-condition is that strong ignorability is satisfied.
- ▶ It is crucial to validate this assumption through various means.
- Methods only differ in the way to handle nuisance parameters.

- ▶ We will use the classic example from LaLonde (1986) in the next few lectures.
- This study compares the treatment group in an experiment with both the real control group and a control group drawn from the population (CPS and PSID).
- ▶ It thus provides a benchmark (the experimental estimate) for evaluating different methods in observational studies.
- Treatment: skill training in the National Supported Work Demonstration (NSW) program.
- Outcome: annual income in 1978.
- ► Covariates: age, education, race, married, plus income and employment status in 1974 and 1975.

```
## The OLS estimate is 1794.343
## The SE of OLS estimate is 670.9967
## The Lin regression estimate is 1583.468
## The SE of Lin regression estimate is 678.0574
```

```
## The OLS estimate is -15204.78
## The SE of OLS estimate is 657.0765
## The Lin regression estimate is -8746.283
## The SE of Lin regression estimate is 4398.952
```

##		${\tt mean.Tr}$	${\tt mean.Co}$	sdiff	T pval
##	age	25.816	25.054	10.655	0.266
##	${\tt education}$	10.346	10.088	12.806	0.150
##	black	0.843	0.827	4.477	0.647
##	hispanic	0.059	0.108	-20.341	0.064
##	married	0.189	0.154	9.000	0.334
##	nodegree	0.708	0.835	-27.751	0.002
##	re74	2095.574	2107.027	-0.234	0.982
##	re75	1532.056	1266.909	8.236	0.385
##	u74	0.708	0.750	-9.190	0.330
##	u75	0.600	0.685	-17.225	0.068

##		${\tt mean.Tr}$	mean.Co	sdiff	T pval
##	age	25.816	34.851	-126.266	0.000
##	${\tt education}$	10.346	12.117	-88.077	0.000
##	black	0.843	0.251	162.564	0.000
##	hispanic	0.059	0.033	11.357	0.132
##	married	0.189	0.866	-172.406	0.000
##	nodegree	0.708	0.305	88.378	0.000
##	re74	2095.574	19428.746	-354.707	0.000
##	re75	1532.056	19063.338	-544.576	0.000
##	u74	0.708	0.086	136.391	0.000
##	u75	0.600	0.100	101.786	0.000

- What causes the striking differences?
- ► Heckman, Ichimura, and Todd (1997) suggest that there are four possibilities.
 - 1. the treated and the non-experimental untreated differ in unobservable attributes (selection bias).
 - the treated and the non-experimental untreated differ in observable attributes.
 - different questionnaires are used in the experiment and the observation study.
 - 4. these individuals come from different economic environments.
- ▶ Their analysis finds that 2, 3, and 4 are more important than 1.

References I

- Heckman, James J, Hidehiko Ichimura, and Petra E Todd. 1997. "Matching as an Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme." *The Review of Economic Studies* 64 (4): 605–54.
- LaLonde, Robert J. 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data." *The American Economic Review*, 604–20.
- Rosenbaum, Paul R, and Donald B Rubin. 1983. "The Central Role of the Propensity Score in Observational Studies for Causal Effects." *Biometrika* 70 (1): 41–55.