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Roadmap

• A brief introduction of causal inference and experimental
design.

• What is causal inference and why do we need experimental
design?

• We work through an educational experiment implemented in
Afghanistan.

• It is an example to show the power of randomized controlled
trial (RCT).

• We discuss how to design and analyze an experiment.
• We extend the results to general datasets in social sciences.



Social sciences and causality

• As social scientists, we are always interested in causal
relationships.

• In particular, we want to know what will happen to an outcome
of interest, Y , when the value of a factor D changes.

• Does economic development (D) leads to democratization (Y )?
• Do political ads (D) change the ideology of voters (Y )?
• Does college education (D) increase your wage on the labor

market (Y )?

• Why do we only study the effect of a cause, not the causes of
an effect?

• The latter has too many possibilities.
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Correlations and causations

• If we observe that students who attend the CBE schools have
higher scores in exams, does it imply that the CBE has
generated positive effects?

• Maybe not: correlations do not imply causation.
• Usually there are two potential problems:

• Omitted variables: it is the CBE or their own acumen?
• Reverse causality: are better students more likely to attend the

CBE?

• Causal identification is usually hard!
• That’s why we have an academic field for it: causal inference.
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The fundamental problem of causal inference

• Ideally, causal relationships are identified by using a time
machine.

• You travel back in time, setting D to a different value and
observing how Y changes accordingly.

• Suppose the treatment D takes two values, 0 and 1.
• The corresponding values of Y are denoted as Y (0) and Y (1).
• The causal effect of changing D from 0 to 1 equals
τ = Y (1) − Y (0).

• τ is the parameter of interest, the treatment effect.
• Y (0) and Y (1) are denoted as potential outcomes of Y .
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(Holland, 1986)
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The fundamental problem of causal inference

“Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.”
— The road not taken, Robert Frost



The Rubin model

• The framework we have introduced to describe causal
relationships is called the Rubin model in statistics.

• It was first proposed by the Harvard statistician Donald Rubin
in the 70s.



The Rubin model

• For each individual i , we observe an outcome Yi and a
treatment Di .

• Suppose Di is binary, then,

Yi =
{
Yi(1) if Di = 1,
Yi(0) if Di = 0.

• τi = Yi(1) − Yi(0) is the treatment effect for individual i , or
the “individualistic treatment effect.”

• The average of τi , 1
N

∑N
i=1 τi , is called the average treatment

effect (ATE).

• How to interpret the ATE?



The Rubin model

• For each individual i , we observe an outcome Yi and a
treatment Di .

• Suppose Di is binary, then,

Yi =
{
Yi(1) if Di = 1,
Yi(0) if Di = 0.

• τi = Yi(1) − Yi(0) is the treatment effect for individual i , or
the “individualistic treatment effect.”

• The average of τi , 1
N

∑N
i=1 τi , is called the average treatment

effect (ATE).
• How to interpret the ATE?



Two solutions

• The light goes on after I turn it on— is it causation?

• Yes, under the assumption of temporal invariance:
• Denote the time when I turn on the light as t and the time

when it is on as t + 1.
• We observe Yt+1(1) (on) and Yt(0) (off) but not Yt+1(0).
• The difference between Yt+1(1) and Yt(0) is causal only when

Yt(0) = Yt+1(0).
• When will this assumption be violated?
• Causal inference relying on this assumption is called the

“scientific solution.”
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Two solutions

• The assumption of temporal invariance is hard to satisfy in
social sciences.

• If we find that the average test score becomes highers after
students attend the CBE schools, can we claim any causation?

• Now D is attending the CBE schools and Y is test score.
• The assumption implies that the average test score before they

attend the schools is the same as the average test score if they
do not attend the schools.

• Most outcomes in social sciences change with time.
• Hence, we need a different solution.



Two solutions

• The assumption of temporal invariance is hard to satisfy in
social sciences.

• If we find that the average test score becomes highers after
students attend the CBE schools, can we claim any causation?

• Now D is attending the CBE schools and Y is test score.
• The assumption implies that the average test score before they

attend the schools is the same as the average test score if they
do not attend the schools.

• Most outcomes in social sciences change with time.
• Hence, we need a different solution.



Two solutions

• The assumption of temporal invariance is hard to satisfy in
social sciences.

• If we find that the average test score becomes highers after
students attend the CBE schools, can we claim any causation?

• Now D is attending the CBE schools and Y is test score.
• The assumption implies that the average test score before they

attend the schools is the same as the average test score if they
do not attend the schools.

• Most outcomes in social sciences change with time.
• Hence, we need a different solution.



Two solutions

• Suppose we can find two groups of students who are on
average the same in all dimensions except for whether having
attended the CBE schools.

• Now, the difference in average test scores between the two
groups can be solely attributed to the influence of the schools.

• This is what Holland calls a “statistical solution.”
• It is the most common solution in social sciences.
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The golden standard: randomized controlled trial

• Suppose there are N students.
• Under randomization, whether Di equals 0 or 1 is uncorrelated

with the characteristics of student i .

• In expectation, the two groups (with Di = 0 or Di = 1) are
identical in all the dimensions.

• The group with Di = 1 is called the treatment group and the
one with Di = 0 is called the control group.
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Design randomized controlled trials

• In practice, though, we may have “bad draws.”
• The two groups may look quite different under a particular

draw.

• If we are able to re-randomize, do it.
• Otherwise, we can divide subjects into homogeneous “blocks”

first and randomize within each block.
• Blocking experiments are usually more efficient and popular.
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Design randomized controlled trials

• Sometimes randomization at individual level is
unfeasible/impractical.

• We can also randomize at a higher level (class/village).
• This is called a clustering experiment.
• Subjects in the same cluster will receive the same treatment.

• There are more complicated designs (dynamic experiment,
network experiment, etc.).

• By “design,” we mean how the treatment is assigned to
subjects.
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Estimate the causal effect from randomized controlled
trials

• After obtaining results from the experiment, we can estimate
the ATE by comparing the difference in means between the two
groups:

ÂTE = 1
Ntr

N∑
i=1

DiYi − 1
Nc

N∑
i=1

(1 − Di)Yi

• In statistics, randomization guarantees that the treatment Di is
independent to the potential outcomes Yi(0) and Yi(1).

• By independence, we can further prove that ÂTE is 1.
unbiased and 2. consistent.
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Estimate the causal effect from randomized controlled
trials

• Unbiasedness means that if we run the same experiment for
many times, the average of the estimates will be very close to
the true ATE.

• Consistency means that if we have a very large sample, then
the average of the estimates will be very close to the true ATE.

• As we only run the experiment once, getting a larger sample
always helps.
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Pros and cons of RCT

• Estimates from RCTs are unbiased and consistent for the true
ATE.

• RCT has the highest internal validity.
• It is the foundation of natural sciences.
• It has become increasingly popular in social sciences.



Pros and cons of RCT

• It is often more expensive.
• Many problems cannot be studies by RCT.

• Unrealistic
• Unethical

• The external validity of RCT is not always very high.
• Do RCTs prevent people from getting the treatment?



The Afghanistan experiment: design

• We ran two experiments in different areas of Afghanistan, one
in 2008 and one in 2015.

• Why twice?

• We first choose five districts in Afghanistan.
• Within each district, we provide young girls in some randomly

selected villages the access to CBE schools.
• Each district is a block and each village is a cluster.
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The Afghanistan experiment: result
• We have 358 treated students and 331 students under control

in the 2008 experiment.
• In the 2015 experiment, the numbers are 909 and 309,

respectively.
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The Afghanistan experiment: result

t=1 (2008) t=2 (2015)
ITT Effect 0.73 0.35

(0.11) (0.13)
Control mean -0.36 -0.17

(0.09) (0.12)
N 689 1218

Table 1: Least squares regression estimates of the intention-to-treat (ITT)
effects and control group means. Outcome is combined math-verbal test
score, standardized. Standard errors accounting for village-level clustering
in parentheses.

• Why is the effect much smaller in 2015?



Non-compliance in an experiment

• Is it the treatment effect we want?

• Yes and no.
• A severe problem in this experiment is non-compliance.
• Students with the access may not attend the schools, while

students without the access may attend.
• They do not comply with the treatment assignment.
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Non-compliance in an experiment

• We need to distinguish treatment assignment (Z ) and
treatment exposure (D).

• ATE is the effect caused by D rather than Z .

• Now the difference between the treatment group and the
control group is no longer the ATE.

• It is called the intention to treat (ITT) effect.
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Principal strata

• How to estimate the ATE in this case?
• We need a concept called principal strata.
• Let’s take a closer look at non-compliance.



Principal strata

• There are four types of individuals in the experiment.
• Always-taker: attend the CBE no matter the value of Z
• Never-taker: do not attend the CBE no matter the value of Z
• Complier: attend the CBE only when Z = 1
• Defier: attend the CBE only when Z = 0

• Those types are called “Principal strata.”
• Usually we assume that there is no defier.
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Estimate the ATE with non-compliance

• The ATE equals to the effect on the compliers.
• We do not know who is a complier.
• D can also be written in the form of potential outcomes.

Di =
{
Di(1) if Zi = 1,
Di(0) if Zi = 0.



Estimate the ATE with non-compliance

• Always-taker: Di(1) = 1 and Di(0) = 1.
• Never-taker: Di(1) = 0 and Di(0) = 0.
• Complier: Di(1) = 1 and Di(0) = 0.
• Defier: Di(1) = 0 and Di(0) = 1.



Estimate the ATE with non-compliance

• We don’t know the value of D when Z becomes different.
• Again, the fundamental problem of causal inference.

• But we can infer the proportion of compliers.
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Estimate the ATE with non-compliance

• When D = 1 and Z = 1: always-takers + compliers.
• When D = 1 and Z = 0: always-takers.
• When D = 0 and Z = 1: never-takers.
• When D = 0 and Z = 0: never-takers + compliers.
• Randomization means the proportion of each principal strata

should be similar in the treated group and the control group.



Estimate the ATE with non-compliance

• Remember that in the 2015 experiment, there are 909 treated
subjects and 309 subjects under control.

• D = 1 and Z = 1: 0.54 = always-takers + compliers.
• When D = 1 and Z = 0: 0.17 = always-takers.
• When D = 0 and Z = 1: 0.46 = never-takers.
• When D = 0 and Z = 0: 0.83 = never-takers + compliers.



Estimate the ATE with non-compliance

• Always-takers: 0.17, never-takers: 0.46, compliers: 0.37.
• The ATE estimate equals 0.35/0.37 = 0.946.
• Similarly, in the 2008 experiment, we have:
• Always-takers: 0, never-takers: 0.31, compliers: 0.38.
• The ATE estimate equals 0.73/0.69 = 1.058.



Estimate the ATE with non-compliance

• The difference is much smaller!
• We further divide compliers into two strata: true-compliers and

substitutors.
• The latter are those who transfer from public schools.
• The effect is smaller for them and but their proportion is much

higher in 2015.



Design-based perspective

• It is easy to identify causal relationships via experiments.
• But many questions cannot be answered by running RCT.

• How can we establish causality in observational studies?
• We should take the “design-based perspective.”
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Design-based perspective

• Instead of assuming a correct model for the outcome, we focus
on how the treatment is assigned.

• In other words, we should infer the hypothetical experiment
that generates the data at hand.

• These hypothetical experiments are called “natural
experiments.”

• If we want to claim causality, we must have an experiment
conducted by either researchers or Mother Nature.

• Our job in observational studies is to find how the experiment
is implemented by Mother Nature using our substantive
knowledge.



Design-based perspective

• Let’s go back to the relationship between college education and
wage.

• We should think about how the admission into colleges is
decided and when it could be seen as a randomized assignment.

• For example, in some countries, it is decided by a threshold in
the test score.

• We can compare those who are just above the threshold with
those who are just below it.

• Or we can interview the admission committee to see whether
there is any randomization in the process.

• How do they choose between two candidates who are similar in
all the aspects they care about?
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decided and when it could be seen as a randomized assignment.

• For example, in some countries, it is decided by a threshold in
the test score.

• We can compare those who are just above the threshold with
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• Or we can interview the admission committee to see whether
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all the aspects they care about?



Design-based perspective

• Causal inference is not magic.
• It helps you find experiments in your own field and analyze it in

rigorous ways.
• But it requires your deep understanding of the subject to find

an experiment.
• Always keep your theory in mind and talk to your subjects!


