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Review

I We introduced another method to account for the influence of
confounders, weighting.

I It is based on the argument of Rosenbaum and Rubin that the
propensity score is central for causal inference.

I It contains all the information from the confounders and should
be a balance score.

I We can estimate the propensity scores with either logistic
regression or the CBPS method.

I Then, we rely on the IPW estimators (HT or HA) to obtain the
estimates.

I Using the estimated propensity scores is more efficient than
using the true propensity scores.

I Ignoring the uncertainty from estimating the propensity scores
leads to conservative variance estimates.
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Regression

I Conventionally, we use regression models to control for the
influence of confounders.

I We run the following regression:

Yi = τDi + X′iβ + εi .

I Except for strong ignorability, we also assume that

E [Yi |Di ,Xi ] = τDi + X′iβ

I The impacts from the regressors are additive, linear, and
homogeneous.

I These are structural restrictions that are usually unjustified.
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Regression: caveats
I Remember that when Di is randomly assigned, controlling Xi

does not cause any bias asymptotically.
I This is no longer the case when we implement block

randomization or assume strong ignorability.
I Linearity is more acceptable since we can control for high-order

terms in the regression.
I Let’s assume that

Yi (0) = X′iβ,
Yi (1) = Yi (0) + τi ,

E [Di |Xi ] = X′iη.

I Aronow and Samii (2016) show that under these conditions,

τ̂OLS →
E [wiτi ]
E [wi ]

6= E [τi ],

where wi = (Di − E [Di |Xi ])2.
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Regression: caveats

I The OLS estimate converges to a “convex combination” of
individualistic treatment effects.

I In the definition of the SATE, each τi has a weight of 1
N .

I But in the OLS estimate, the weights vary across the units.
I In general, τ̂OLS does not converge to τ unless τi = τ

(homogeneity).
I Observations have unequal contributions to the estimate.
I The group in which the treatment varies more drastically is

over-weighted in the analysis.
I Thus, the OLS estimate is not representative of the sample and

does not have a higher external validity.
I Aronow and Samii (2016) define the concept of “effective

sample,” the sample re-weighted by each unit’s contribution to
the estimate.
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Regression: caveats
In the effective sample, each unit has a weight of ν̂2

i , where ν̂i is the
residual from regressing Di on Xi .
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Regression: caveats

I Regression may prevent you from seeing the failure of positivity.
I Let’s assume that τi = τ , and fit regression models on both the

treatment group and the control group.
I The regression coefficients will be consistently estimated, and

we can calculate the predicted outcome Ŷi for any unit.
I Then, we estimate τ by

τ̂ = 1
N1

N∑
i=1

Di Ŷi −
1

N0

N∑
i=1

(1− Di )Ŷi .

I It is straightforward to show that

E [τ̂ ]→ τ + (X̄1 − X̄0)β.

I If positivity fails, X̄1 6= X̄0 and the estimator is inconsistent.
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Regression: remedy
I One solution is to rely on the “counterfactual estimator” (Kline

2011; Heckman, Ichimura, and Todd 1997).
I We first estimate β using only units in the control group.
I Then, we predict the counterfactual of each treated unit via

Ŷi (0) = X′i β̂.

I We estimate τ via

τ̂reg = 1
N1

N∑
i=1

Di
(
Yi − Ŷi (0)

)
→ τATT = 1

N1

∑
i :Di =1

τi .

I This estimator does not suffer from the asymptotic bias as we
weight the treated units properly.

I The idea is later generalized to “X-learner” by Künzel et al.
(2019) where they use machine learning to predict Ŷi (0).
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Regression: pros and cons

I Regression requires the correct model specification and relies
on extrapolation when positivity fails.

I We can increase the complexity of the outcome model to
reduce the bias caused by treatment effect heterogeneity
(Ratkovic 2019).

I For instance, with one confounder, we can fit two kernel
regression models, m̂1(Xi ) and m̂0(Xi ), on the treatment group
and the control group, respectively.

I Then,

τ̂reg = 1
N

N∑
i=1

[m̂1(Xi )− m̂0(Xi )]

will be consistent for τ .
I Regression requires weaker assumptions: E [εi |Xi ] = 0.
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Regression: application

## The OLS estimate is 1794.343

## The SE of OLS estimate is 670.9967

## The Lin regression estimate is 1583.468

## The SE of Lin regression estimate is 678.0574
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Regression: application

## The regression ATT estimate is 687.8221
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Balancing

I Now, consider the outcome model

Yi (0) = X′iβ0,

Yi (1) = X′iβ1 + τi .

I Suppose we can find a group of weights, {wi}(i :Di =0), such that

X̄1 =
∑

i :Di =0
wiXi , and

∑
i :Di =0

wi = 1

I Then,
Ȳ1 − Ȳ w

0 = τATT + (X̄1 − X̄1)β = τATT ,

with Ȳ w
0 =

∑
i :Di =0 wiYi .

I This is an idea known as balancing.
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Entropy balancing

I There are many possible sets of {wi}(i :Di =0) that satisfy the
balance conditions.

I We choose the set that minimizes a pre-specified criterion, such
as the entropy (Hainmueller 2012):∑

i :Di =0
wi logwi .

I This method is thus known as “entropy balancing.”
I Entropy measures the “uncertainty inherent to the variable’s

possible outcomes” (Wikipedia).
I It has a root in statistical thermodynamics and was introduced

by Shannon when he founded the information theory.
I The weights can be solved via convex optimization.
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Entropy balancing

I We estimate the ATT via

τ̂EB = 1
N1

∑
i :Di =1

Yi −
∑

i :Di =0
ŵiYi

I τ̂EB is consistent when either the outcome is linear in Xi or the
propensity score model is logistic (Zhao and Percival 2016).

I We can try to balance higher order moments of X.
I The more moments we balance, the more likely we eliminate all

the influences of X.
I There can be too many choices if X is also high-dimensional.
I We need approaches to select moments that matter.
I This can be done by either kernel balancing (Hazlett 2018) or

hierarchically regularized entropy balancing (Xu and Yang
2021).
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Kernel balancing
I In kernel balancing, we calculate the kernel distance between

each pair of units.
I Suppose we use the Gaussian kernel

k(Xi ,Xj) = e−
||Xi−Xj ||

2

2b ,

and generate the kernel matrix K with the (i , j)th element
being k(Xi ,Xj).

I We find a group of weights {wi}(i :Di =0) such that

1
N1

∑
i :Di =1

k(Xi ,Xj) ≈
∑

i :Di =0
wik(Xi ,Xj)∑

i :Di =0
wi = 1,

for any j .
I {k(Xi ,Xj)}i 6=j are seen as N − 1 covariates of i .
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Kernel balancing

I Hazlett (2018) show that if

Yi = α + τiDi + Φ(Xi )′β + εi ,

〈Φ(Xi ),Φ(Xj)〉 = k(Xi ,Xj),

then these weights also satisfy

1
N1

∑
i :Di =1

Φ(Xi ) =
∑

i :Di =0
wi Φ(Xi ).

I For the Gaussian kernel, Φ(Xi ) encompasses all the continuous
functions of Xi when N →∞.

I Similarly, the balancing stage introduces extra uncertainties
which are often ignored in practice (Wong and Chan 2018).
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Balancing: application

## Converged within tolerance

## The ebal ATT estimate is 2424.661

## The SE of ebal ATT estimate is 894.7984
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