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Review

§ We learned how to use kernel regression to estimate the CATE.
§ For any local parameter that is smooth around x , we can
estimate its value using information from the neighbors.

§ Within the neighborhood, we can use regression models to
increase the accuracy (local regression).

§ Bandwidth selection is critical in kernel regression since it is
about the bias-variance trade-off.

§ We can find the optimal bandwidth through cross-validation.
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Block randomization
§ Controlling covariates in Lin’s regression leads to efficiency
gains.

§ This is an ex post adjustment.
§ Another way to achieve this is to control for them ex ante.
§ Suppose we observe Xi before randomizing the treatment, and
dimensionality of the covariates space is not too high.

§ For example, we may have two binary covariates, oldi P t0, 1u
and collegei P t0, 1u.

§ We can divide the sample into blocks based on the values of
covariates, and randomize within each block:

poldi , collegeiq “
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p0, 0q,
p0, 1q,
p1, 0q,
p1, 1q.
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Block randomization
§ Within each block, we may implement either the Bernoulli trial
or complete randomization.

§ We can allow the probability of being treated to vary across
blocks:

pi “

$

’
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0.2 if poldi , collegeiq “ p0, 0q,
0.3 if poldi , collegeiq “ p0, 1q,
0.8 if poldi , collegeiq “ p1, 0q,
0.4 if poldi , collegeiq “ p1, 1q.

§ We have seen that it might be desirable to treat more units in
groups where the CATE is larger.

§ Now, the probability of being treated is a function of Xi :
pi “ PpDi “ 1|Xiq “ gpXiq.

§ These treatment assignment mechanisms are individualistic,
probabilistic, and unconfounded.

§ They are known as block randomization or stratified
experiments.
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Block randomization: assumption

§ Such a design implies the following two assumptions:

Di K tYip0q,Yip1qu|Xi ,

0 ă gpXiq ă 1.

§ Suppose gpXiq is not a constant and Xi affect the value of Yi .
§ Xi also affect the value of Di through gpXiq.
§ If old individuals are treated with a higher probability, there will
be more of them in the treatment group.

§ Now, Xi are confounders rather than just moderators.
§ The difference-in-means estimator is no longer consistent.
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Block randomization: estimation
§ We need to account for the difference in the probability of
being treated to acquire unbiased or consistent estimates.

§ Note that gpXiq is a constant within each block.
§ Hence, we can first estimate the CATE in each block and then
take the average over the estimates, weighted by the
proportion of each block.

§ Suppose we have two groups, the old and the young, with sizes
NO and NY .

§ The number of treated units in the two groups are N1O and
N1Y , respectively.

§ We should first estimate τO, τY , σ2
O, and σ2

Y as before, and
obtain

τ̂ “
NO
N τ̂O `

NY
N τ̂Y

yVar rτ̂ s “ N2
O

N2 σ̂
2
O `

N2
Y

N2 σ̂
2
Y .
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Block randomization: estimation

§ Or, we apply the HT or HA estimator with varying probabilities:

τ̂HT “
1
N

N
ÿ

i“1

DiYi
gpXiq

´
1
N

N
ÿ

i“1

p1´ DiqYi
1´ gpXiq

.

τ̂HA “
N
ÿ

i“1

DiYi{gpXiq

Di{gpXiq
´

1
N

N
ÿ

i“1

p1´ DiqYi{p1´ gpXiqq

p1´ Diq{p1´ gpXiqq
.

§ It is easy to show that these estimators are consistent and
asymptotically normal.

§ Variance estimation can be obtained by adjusting the original
formula.

§ Therefore, we have two (equivalent) approaches to estimate
the ATE.

§ But they are based on slightly different ideas.
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Block randomization: estimation

§ We may still rely on the regression estimator under block
randomization.

§ We can show that the first estimator is equivalent to running
Lin’s regression with block indicators as covariates.

§ In the previous example, we have

Yi “ µ` τDi ` βpoldi ´ Ďoldq ` δDi ˚ poldi ´ Ďoldq ` εi .

§ The second estimator (Hajek) is equivalent to the WLS
estimator, as we illustrated before.

§ Remember that the weight for unit i equals

Wi “
Di

gpXiq
`

1´ Di
1´ gpXiq

§ Again, we should apply the HC2 variance estimator.
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Block randomization: simulation

## The true ATE is 3.278

## The estimate from the unweighted HA estimator is 3.769

## The estimate from the weighted HA estimator is 3.252

## The Lin's regression estimates is 3.252

## The WLS estimates is 3.252
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Block randomization: discussion

§ We should block on covariates which are expected to have a
strong prediction power for the outcome.

§ Sometimes we use existing strata like schools or villages.
§ Blocking is ensured to reduce the variance of your estimator,
since

Var rE rτ̂ |Xi ss ď Var rτ̂ s.
§ We can combine block randomization with regression
adjustment, e.g., applying Lin’s regression within each block.

§ There exists a tradeoff between the balance in observable
covariates and the balance in unobservable covariates (Harshaw
et al. 2019).

§ To improve how well our experiment predicts the reality,
balancing all the variables may not be the optimal choice.
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Cluster-randomized experiments

§ Sometimes it is impossible or too costly to assign the
treatment at the unit level.

§ Instead, we randomize at a higher level, such as villages,
schools, clinics, etc.

§ Each unit at this higher level is called a cluster, denoted as
tCcu

C
c“1.

§ Every unit in the same cluster receives the same treatment.
§ A cluster is different from a stratum or block!
§ We can still rely on the estimators we have learned.
§ But the standard errors have to be adjusted (clustered).
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Clustered standard errors

§ Remember that in the regression setting, we estimate the
standard errors with

yVar
”

β̂
ı

“ pX1Xq´1pXε̂ε̂1X1qpX1Xq´1,

where Xε̂ε̂1X1 “
řN

i“1 ε̂
2
i XiX1i .

§ All the off-diagonal elements in Σ̂ “ ε̂ε̂1 equal to zero.
§ This is true only when the units are independent to each other
(as E rεiεj s “ 0).

§ In clustering experiments, dependence within clusters leads to
the fact that E rεiεj s ‰ 0 if i and j belongs to the same cluster.
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Clustered standard errors

§ The sandwich variance estimator is still valid.
§ But we need to calculate the off-diagonal elements in Σ̂:

Xε̂ε̂1X1 “
C
ÿ

c“1
Xc ε̂c ε̂

1
cX1c

“

N
ÿ

i“1
ε̂2

i XiX1i `
N
ÿ

i“1

ÿ

j:ti ,jPCcu

ε̂i ε̂jXiX1j ,

where ε̂c represents the regression residuals for units from
cluster c, and Xc represents the covariates of these units.

§ The robust standard error may overestimate or underestimate
the true variance.

§ It hinges on the correlation between units within the same
cluster.
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Clustered standard errors

§ The model-based approach justifies clustered standard errors
with unobservable group attributes.

§ But this is not testable and leads to confusions in practice.
§ Abadie et al. (2017) argue that we should cluster standard
errors when either there is clustering in sampling or in the
design.

§ We should focus on clustering in the treatment rather than the
outcome.

§ Remember that in any finite sample, the potential outcomes
are fixed, and randomness only comes from the design.

§ There is no need to always cluster at the highest level.
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Asymptotics in cluster-randomized experiments
§ Because units in the same cluster are dependent on each other,
the effective sample size is smaller than N.

§ As N grows, C should grow while N
C remains stable.

§ Then, we expect the asymptotic distribution to be normal and
the convergence rate to be

?
C (Su and Ding 2021).

§ In practice, there should be no cluster that is much larger than
the others in size.

§ Su and Ding (2021) suggest that we can 1) calculate the
weighted average outcome in each cluster,

Ȳc “
C
N

ÿ

iPCc

Yi ,

and 2) estimate the effect of Dc on Ȳc using Lin’s regression
and cluster averages of the covariates.

§ It is ensured to be more efficient, and we only need to use the
robust variance estimator.
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Cluster-randomized experiments: application

## The SATE is 3.901231

## The OLS estimate is 3.939

## The OLS estimate using aggregated outcome is 3.939

## The true variance of the OLS estimate is 3.308

## The true variance of the OLS estimate
## using aggregated outcome is 3.308

## The estimated variance of the OLS estimate is 3.734

## The estimated variance of the OLS estimate
## using aggregated outcome is 2.955

## The clustered variance of the OLS estimate is 3.039
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Cluster-randomized experiments: application

## The SATE is 3.901231

## The OLS estimate is 3.885

## The true variance of the OLS estimate is 3.601

## The estimated variance of the OLS estimate is 3.615

## The clustered variance of the OLS estimate is 3.624
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