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Review

I We discussed basic concepts in statistical analysis.
I The estimand is the theoretical quantity we want to estimate.
I The estimator is a mapping from data to a number (the

estimate).
I We hope that the estimator is well behaved.
I Desirable properties include unbiasedness, consistency,

efficiency, and asymptotic normality.
I We also want to quantify the uncertainty around our estimate.
I This process is known as statistical inference.
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Review

I Typically, we first derive the variance of the estimator.
I Then, we use its sample analogue to estimate the variance.
I It is acceptable if the variance estimate is conservative.
I If the estimator converges to a normal distribution with the

root-N rate, we can construct confidence intervals using normal
critical values.
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Why do we care about causality?

I This lecture introduces basic concepts in causal inference.

I Most theories we are interested in take the form of causal
relationships.

I What would happen to Y if D changes?
I Does economic growth cause democratization?
I Do political ads change viewers’ political preference?
I Can trade reduce the probability of war?

I We call Y the outcome and D the treatment.

I The better we understand causal relationships, the better we
can design policy interventions.
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How do we define causality?

I There has been a long history of defining causality.
I Aristotle (four causes), Hume (does it exist?), Mill (the

method of agreement/difference). . .
I We follow the current practice and define causality using

counterfactual.
I Ideally, we travel back to the past with a time machine and

alter the value of D.
I We then observe what would happen to Y .
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How do we define causality?

I “Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.”
— Robert Frost, The Road Not Taken

I This simple idea is captured by the Neyman-Rubin model.
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The Neyman-Rubin model

I We possess a sample of N units.
I Denote the outcome of interest for unit i as Yi and the

treatment as Di ∈ {0, 1}.
I We may also have some pre-treatment covariates Xi .
I Then, we have

Yi =
{

Yi(0), Di = 0
Yi(1), Di = 1.

I Yi(d) is called the “potential outcome.”
I τi = Yi(1)− Yi(0) is the individualistic treatment effect.
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The Neyman-Rubin model

I We call the average of τi , τ = 1
N
∑N

i=1 τi , the average
treatment effect (ATE).

I When N is sufficiently large, we can also write the ATE as
E [τi ].

I Obviously,

τ = E [τi ] = E [Yi(1)]− E [Yi(0)].

I Note that Yi(d) could be a complex function of both
observable and unobservable factors:

Yi(d) = fd(Xi ,Ui),

where Ui represents unobservable factors.
I τ is a quantity that marginalizes over all these factors.
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The Neyman-Rubin model

I The model includes several implicit assumptions:
1. Consistency,
2. Manipulable treatment,
3. Stable Unit Treatment Value Assumption (SUTVA).
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The Neyman-Rubin model

I Consistency is a philosophical concern on the interpretation of
potential outcomes.

I Manipulable treatment restricts the scope of problems we could
study.

I It forces us to focus on the “effects of causes” rather than
“causes of effects.”

I SUTVA can be relaxed in many cases.
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The Neyman-Rubin model

I The idea of potential outcomes was first established by Neyman
when analyzing agricultural experiments (Neyman 1923).

I It was formalized by Rubin in his 1974 paper (“the science”).
I One motivation of the model is Heisenberg’s uncertainty

principle.
I It was independently developed in other disciplines (Roy model,

Pearl’s DAG, etc.).
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The fundamental problem of causal inference

I We observe either Yi(0) or Yi(1) in practice, but never both.
I “The fundamental problem of causal inference” (Holland 1986)
I The unobserved potential outcome is called the counterfactual.
I Causal inference aims to impute the counterfactual based on

assumptions.
I “Causal inference is a missing data problem.” —Donald Rubin
I Qualitative studies can be similarly understood (Coppock and

Kaur 2022)
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The fundamental problem of causal inference

Unit Yi(1) Yi(0) Di

1 3 2
2 5 3
3 4 5

I The ATE equals to (1 + 2− 1)/3 = 2/3.
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The fundamental problem of causal inference

Unit Yi(1) Yi(0) Di

1 3 NA 1
2 NA 3 0
3 4 NA 1
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The scientific solution

I How do we test Newton’s second law of motion?
I “When a constant force acts on a massive body, it causes it to

accelerate.”
I We need two assumptions: temporal stability and unit

homogeneity.
I Neither is credible in social science.
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The statistical solution

I The statistical solution relies on a large sample.
I We divide the sample into the treatment group and the control

group.
I Idea: John Mill’s method of difference.
I If the two groups are the same in all the aspects, their

difference in the average outcome could be attributed to the
treatment.

I Yet this does not work in practice.
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Treatment assignment

I Suppose there are 20 binary covariates that affect the outcome
variable.

I To apply the method of difference, we need a sample of
220 ≈ 1 million units.

I Instead, we rely on randomization of treatment assignment.
I Suppose there exists a probability 0 < pi < 1 for each unit i ,

such that
P(Di = 1) = pi .

I This is an individualistic and probabilistic assignment
mechanism (Imbens and Rubin 2015).
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Treatment assignment
I In theory, we can assign the treatment vector

d = (d1, d2, . . . , dN) altogether.

Assignment Probability

(1, 0, 1) 0.4
(0, 0, 1) 0.6

I There are at most 2N possibilities.
I We can assign each possibility a probability such that these

probabilities sum up to one.
I These probabilities are known as an assignment mechanism.
I But we usually assume that treatment assignment is decided by

one’s own attributes (individualistic) and the probability is
strictly between 0 and 1 (probabilistic).

I Individualistic assignment does not mean that the probabilities
are independent across units.
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Treatment assignment
I In this case, pi may still be a function of all the variables in

sample:
pi = g(Xi ,Ui ,Yi(1),Yi(0)).

I This assignment mechanism is unconfounded if pi = p(Xi).
I If the assignment mechanism is individualistic, probabilistic, and

unconfounded, we have a classical randomized experiment.
I From now on, we further assume that pi does not depend on

Xi .
I There are two common assignment mechanisms in practice.
I Bernoulli trial: pi = p for any i .
I Complete randomization:

P(d) =


1

( N
N1

) , if
∑N

i=1 di = N1

0, otherwise.
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Treatment assignment

I Let’s define N1 =
∑N

i=1 Di and N0 =
∑N

i=1(1− Di).
I Obviously, N = N1 + N0.
I They are random variables under Bernoulli trial.
I If p = 0.5, N1 can be either 60 or 40 in one assignment.
I Under complete randomization, N1 and N0 are pre-fixed

numbers.
I Complete randomization gives you the group size you want.
I It is like a lottery.
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Treatment assignment

I But complete randomization is not possible in certain contexts.
I E.g., decide whether a patient is treated or not upon their

arrival.
I It is easier to analyze the Bernoulli trial as probabilities are

independent to each other.
I When N →∞, the difference between the two mechanisms

disappears.
I Therefore, we use the Bernoulli trial as the benchmark.
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Bernoulli trial vs. complete randomization

## Under Bernoulli trial, we have 103 treated units, and
## 97 untreated units.

## Under complete randomization, we have 100
## treated units, and 100 untreated units.
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The statistical solution (continued)

I Treatment assignment is randomized in a classical randomized
experiment, hence

Di ⊥ {Yi(0),Yi(1)},

and
E [Yi |Di = 1] = E [Yi(1)|Di = 1] = E [Yi(1)],
E [Yi |Di = 0] = E [Yi(0)|Di = 0] = E [Yi(0)].

I Hence,

E [Yi |Di = 1]− E [Yi |Di = 0] = E [Yi(1)]− E [Yi(0)] = E [τi ].

I Remember that E [τi ] = τ is the ATE.
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The statistical solution (continued)

I The power of randomization was first recognized by Ronald
Fisher.

I Randomization creates an exogenous variation so that causal
identification becomes possible.

I Due to randomization, all the other factors that affect Yi are
balanced in expectation: E [Xi |Di = 1] = E [Xi |Di = 0].

I This is no guarantee that 1
N1

∑
i :Di =1 Xi = 1

N0

∑
i :Di =0 Xi .

I As N grows, the probability for
∑

i :Di =1 Xi to be significantly
different from

∑
i :Di =0 Xi will get smaller.

I People typically test the null hypothesis that
1

N1

∑
i :Di =1 Xi = 1

N0

∑
i :Di =0 Xi for each Xi .

I Rejection of the null implies the failure of randomization.
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Balance of covariates

I Suppose the null is not rejected, what have we learned?
I What is the right null hypothesis?
I Should we use the t-test or the F-test?
I It is challenging when the covariates are high-dimensional.
I We may still have imbalance in each assignment.
I If possible, you may rerandomize, until∣∣∣∣∣∣ 1

N1

∑
i :Di =1 Xi − 1

N0

∑
i :Di =0 Xi

∣∣∣∣∣∣ ≤ δ.
I By doing so, you are truncating the distribution of potential

estimates.
I Some adjustments might be necessary (Li, Ding, and Rubin

2018).
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The statistical solution (continued)

I If Di is not randomly assigned, there will be Xi affecting both
Yi and Di .

I The causal relationship between Yi and Di will be confounded
by Xi , hence we call them confounders.

I Causal inference studies how to utilize existing randomization
from either experiments or hypothetical experiments to identify
causal relationships.

I It is about inference rather than creating causality from
nowhere.
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Estimand vs. estimator

I No individualistic treatment effect is identifiable under
statistical solutions.

I We focus on the average effect over a fixed population.
I These average effects are our estimands.
I It could be the ATE, the ATT

(τATT = E [Yi(1)− Yi(0)|Di = 1]), or the CATE
(τ(x) = E [Yi(1)− Yi(0)|Xi = x]).

I We sometimes differentiate these estimands in the sample and
them in the population.

I E.g., the SATE ( 1
N
∑N

i=1 [Yi(1)− Yi(0)]) vs. the PATE
(E [Yi(1)− Yi(0)]).
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Estimand vs. estimator

I Our estimands are functionals of the joint distribution of
{Yi(1),Yi(0)}, F (y1, y0).

I Such a distribution is unknown to the researcher.
I For example, the population average treatment effect (PATE)

equals to

τPATE = E [Yi(1)− Yi(0)] =
∫

(y1 − y0)dF (y1, y0)

I In the sample, we only have access to the observed outcome:
Yi = DiYi(1) + (1− Di)Yi(0).

I Denote the joint distribution of {Yi ,Di ,Xi}, i ∈ {1, 2, . . . ,N}
as G(y , d , x).

I Our estimator τ̂ is a functional of G(y , d , x).
I Causal identification means that there exists a τ̂ such that
τ̂(G) = τ(F ) when N is infinite.
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