The Potential Outcome Framework

Ye Wang University of North Carolina at Chapel Hill

Linear Methods in Causal Inference POL1784

Review

- We discussed basic concepts in statistical analysis.
- The estimand is the theoretical quantity we want to estimate.
- The estimator is a mapping from data to a number (the estimate).
- We hope that the estimator is well behaved.
- Desirable properties include unbiasedness, consistency, efficiency, and asymptotic normality.
- We also want to quantify the uncertainty around our estimate.
- This process is known as statistical inference.

Review

- Typically, we first derive the variance of the estimator.
- ▶ Then, we use its sample analogue to estimate the variance.
- It is acceptable if the variance estimate is conservative.
- If the estimator converges to a normal distribution with the root-N rate, we can construct confidence intervals using normal critical values.

Why do we care about causality?

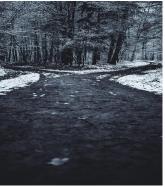
- This lecture introduces basic concepts in causal inference.
- Most theories we are interested in take the form of causal relationships.
- What would happen to Y if D changes?
 - Does economic growth cause democratization?
 - Do political ads change viewers' political preference?
 - Can trade reduce the probability of war?
- ▶ We call *Y* the outcome and *D* the treatment.
- The better we understand causal relationships, the better we can design policy interventions.

How do we define causality?

- There has been a long history of defining causality.
- Aristotle (four causes), Hume (does it exist?), Mill (the method of agreement/difference)...
- We follow the current practice and define causality using counterfactual.
- Ideally, we travel back to the past with a time machine and alter the value of D.
- We then observe what would happen to *Y*.

How do we define causality?

- "Two roads diverged in a wood, and I— I took the one less traveled by, And that has made all the difference."
 - Robert Frost, The Road Not Taken



This simple idea is captured by the Neyman-Rubin model.

- ▶ We possess a sample of *N* units.
- ▶ Denote the outcome of interest for unit *i* as Y_i and the treatment as D_i ∈ {0,1}.
- We may also have some pre-treatment covariates X_i.
- Then, we have

$$Y_i = egin{cases} Y_i(0), \ D_i = 0 \ Y_i(1), \ D_i = 1. \end{cases}$$

- Y_i(d) is called the "potential outcome."
- $\tau_i = Y_i(1) Y_i(0)$ is the individualistic treatment effect.

- We call the average of τ_i , $\tau = \frac{1}{N} \sum_{i=1}^{N} \tau_i$, the average treatment effect (ATE).
- ▶ When N is sufficiently large, we can also write the ATE as E[τ_i].
- Obviously,

$$\tau = E[\tau_i] = E[Y_i(1)] - E[Y_i(0)].$$

Note that Y_i(d) could be a complex function of both observable and unobservable factors:

$$Y_i(d) = f_d(\mathbf{X}_i, U_i),$$

where U_i represents unobservable factors.

• au is a quantity that marginalizes over all these factors.

- The model includes several implicit assumptions:
 - 1. Consistency,
 - 2. Manipulable treatment,
 - 3. Stable Unit Treatment Value Assumption (SUTVA).

- Consistency is a philosophical concern on the interpretation of potential outcomes.
- Manipulable treatment restricts the scope of problems we could study.
- It forces us to focus on the "effects of causes" rather than "causes of effects."
- SUTVA can be relaxed in many cases.

- The idea of potential outcomes was first established by Neyman when analyzing agricultural experiments (Neyman 1923).
- It was formalized by Rubin in his 1974 paper ("the science").
- One motivation of the model is Heisenberg's uncertainty principle.
- It was independently developed in other disciplines (Roy model, Pearl's DAG, etc.).

The fundamental problem of causal inference

- We observe either $Y_i(0)$ or $Y_i(1)$ in practice, but never both.
- "The fundamental problem of causal inference" (Holland 1986)
- The unobserved potential outcome is called the counterfactual.
- Causal inference aims to impute the counterfactual based on assumptions.
- "Causal inference is a missing data problem." —Donald Rubin
- Qualitative studies can be similarly understood (Coppock and Kaur 2022)

The fundamental problem of causal inference

Unit	$Y_i(1)$	$Y_i(0)$	Di
1	3	2	
2	5	3	
3	4	5	

• The ATE equals to (1+2-1)/3 = 2/3.

The fundamental problem of causal inference

$Y_i(1)$	$Y_i(0)$	Di
3	NA	1
NA	3	0
4	NA	1
	3 NA	3 NA NA 3

The scientific solution

- How do we test Newton's second law of motion?
- "When a constant force acts on a massive body, it causes it to accelerate."
- We need two assumptions: temporal stability and unit homogeneity.
- Neither is credible in social science.

The statistical solution

- The statistical solution relies on a large sample.
- We divide the sample into the treatment group and the control group.
- Idea: John Mill's method of difference.
- If the two groups are the same in all the aspects, their difference in the average outcome could be attributed to the treatment.
- Yet this does not work in practice.

- Suppose there are 20 binary covariates that affect the outcome variable.
- \blacktriangleright To apply the method of difference, we need a sample of $2^{20}\approx 1$ million units.
- Instead, we rely on randomization of treatment assignment.
- Suppose there exists a probability 0 < p_i < 1 for each unit *i*, such that

$$P(D_i=1)=p_i.$$

 This is an individualistic and probabilistic assignment mechanism (Imbens and Rubin 2015).

- In theory, we can assign the treatment vector
 - $\mathbf{d} = (d_1, d_2, \dots, d_N)$ altogether.

Assignment	Probability	
(1, 0, 1)	0.4	
(0, 0, 1)	0.6	

- ▶ There are at most 2^N possibilities.
- We can assign each possibility a probability such that these probabilities sum up to one.
- These probabilities are known as an assignment mechanism.
- But we usually assume that treatment assignment is decided by one's own attributes (individualistic) and the probability is strictly between 0 and 1 (probabilistic).
- Individualistic assignment does not mean that the probabilities are independent across units.

In this case, p_i may still be a function of all the variables in sample:

$$p_i = g(\mathbf{X}_i, U_i, Y_i(1), Y_i(0)).$$

- This assignment mechanism is unconfounded if $p_i = p(\mathbf{X}_i)$.
- If the assignment mechanism is individualistic, probabilistic, and unconfounded, we have a classical randomized experiment.
- From now on, we further assume that p_i does not depend on X_i.
- There are two common assignment mechanisms in practice.
- Bernoulli trial: $p_i = p$ for any *i*.
- Complete randomization:

$$P(\mathbf{d}) = \begin{cases} \frac{1}{\binom{N}{N_1}}, & \text{ if } \sum_{i=1}^N d_i = N_1\\ 0, & \text{ otherwise.} \end{cases}$$

- Let's define $N_1 = \sum_{i=1}^N D_i$ and $N_0 = \sum_{i=1}^N (1 D_i)$.
- Obviously, $N = N_1 + N_0$.
- They are random variables under Bernoulli trial.
- If p = 0.5, N_1 can be either 60 or 40 in one assignment.
- ► Under complete randomization, *N*₁ and *N*₀ are pre-fixed numbers.
- Complete randomization gives you the group size you want.
- It is like a lottery.

- But complete randomization is not possible in certain contexts.
- E.g., decide whether a patient is treated or not upon their arrival.
- It is easier to analyze the Bernoulli trial as probabilities are independent to each other.
- ▶ When $N \rightarrow \infty$, the difference between the two mechanisms disappears.
- ► Therefore, we use the Bernoulli trial as the benchmark.

Bernoulli trial vs. complete randomization

- ## Under Bernoulli trial, we have 103 treated units, and ## 97 untreated units.
- ## Under complete randomization, we have 100
 ## treated units, and 100 untreated units.

The statistical solution (continued)

 Treatment assignment is randomized in a classical randomized experiment, hence

$$D_i \perp \{Y_i(0), Y_i(1)\},\$$

and

$$E[Y_i|D_i = 1] = E[Y_i(1)|D_i = 1] = E[Y_i(1)],$$

$$E[Y_i|D_i = 0] = E[Y_i(0)|D_i = 0] = E[Y_i(0)].$$

Hence,

 $E[Y_i|D_i = 1] - E[Y_i|D_i = 0] = E[Y_i(1)] - E[Y_i(0)] = E[\tau_i].$

• Remember that $E[\tau_i] = \tau$ is the ATE.

The statistical solution (continued)

- The power of randomization was first recognized by Ronald Fisher.
- Randomization creates an exogenous variation so that causal identification becomes possible.
- ▶ Due to randomization, all the other factors that affect Y_i are balanced in expectation: E[X_i|D_i = 1] = E[X_i|D_i = 0].
- This is no guarantee that $\frac{1}{N_1} \sum_{i:D_i=1} X_i = \frac{1}{N_0} \sum_{i:D_i=0} X_i$.
- As N grows, the probability for ∑_{i:Di=1} X_i to be significantly different from ∑_{i:Di=0} X_i will get smaller.
- ▶ People typically test the null hypothesis that $\frac{1}{N_1}\sum_{i:D_i=1}X_i = \frac{1}{N_0}\sum_{i:D_i=0}X_i$ for each X_i .
- Rejection of the null implies the failure of randomization.

Balance of covariates

- Suppose the null is not rejected, what have we learned?
- What is the right null hypothesis?
- Should we use the t-test or the F-test?
- It is challenging when the covariates are high-dimensional.
- We may still have imbalance in each assignment.
- If possible, you may rerandomize, until

$$\left|\frac{1}{N_1}\sum_{i:D_i=1}\mathbf{X}_i-\frac{1}{N_0}\sum_{i:D_i=0}\mathbf{X}_i\right|\leq\delta.$$

- By doing so, you are truncating the distribution of potential estimates.
- Some adjustments might be necessary (Li, Ding, and Rubin 2018).

The statistical solution (continued)

- ► If D_i is not randomly assigned, there will be X_i affecting both Y_i and D_i.
- ► The causal relationship between Y_i and D_i will be confounded by X_i, hence we call them confounders.
- Causal inference studies how to utilize existing randomization from either experiments or hypothetical experiments to identify causal relationships.
- It is about inference rather than creating causality from nowhere.

Estimand vs. estimator

- No individualistic treatment effect is identifiable under statistical solutions.
- ▶ We focus on the average effect over a fixed population.
- These average effects are our estimands.
- ► It could be the ATE, the ATT $(\tau_{ATT} = E[Y_i(1) - Y_i(0)|D_i = 1])$, or the CATE $(\tau(\mathbf{x}) = E[Y_i(1) - Y_i(0)|\mathbf{X}_i = \mathbf{x}])$.
- We sometimes differentiate these estimands in the sample and them in the population.
- E.g., the SATE $(\frac{1}{N}\sum_{i=1}^{N} [Y_i(1) Y_i(0)])$ vs. the PATE $(E[Y_i(1) Y_i(0)]).$

Estimand vs. estimator

- Our estimands are functionals of the joint distribution of $\{Y_i(1), Y_i(0)\}, F(y_1, y_0).$
- Such a distribution is unknown to the researcher.
- For example, the population average treatment effect (PATE) equals to

$$au_{PATE} = E[Y_i(1) - Y_i(0)] = \int (y_1 - y_0) dF(y_1, y_0)$$

- ► In the sample, we only have access to the observed outcome: $Y_i = D_i Y_i(1) + (1 - D_i) Y_i(0).$
- ▶ Denote the joint distribution of {Y_i, D_i, X_i}, i ∈ {1, 2, ..., N} as G(y, d, x).
- Our estimator $\hat{\tau}$ is a functional of $G(y, d, \mathbf{x})$.
- Causal identification means that there exists a $\hat{\tau}$ such that $\hat{\tau}(G) = \tau(F)$ when N is infinite.

References I

Coppock, Alexander, and Dipin Kaur. 2022. "Qualitative Imputation of Missing Potential Outcomes." *American Journal* of Political Science.

Holland, Paul W. 1986. "Statistics and Causal Inference." *Journal* of the American Statistical Association 81 (396): 945–60.

- Imbens, Guido W, and Donald B Rubin. 2015. Causal Inference in Statistics, Social, and Biomedical Sciences. Cambridge University Press.
- Li, Xinran, Peng Ding, and Donald B Rubin. 2018. "Asymptotic Theory of Rerandomization in Treatment–Control Experiments." *Proceedings of the National Academy of Sciences* 115 (37): 9157–62.
- Neyman, Jerzy S. 1923. "On the Application of Probability Theory to Agricultural Experiments. Essay on Principles. Section 9.(tlanslated and Edited by Dm Dabrowska and Tp Speed, Statistical Science (1990), 5, 465-480)." Annals of Agricultural Sciences 10: 1–51.