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Review

I We should be aware of the post-treatment bias, bias
amplification, and the collider bias when selecting potential
confounders.

I Placebo tests can be applied to evaluate the assumption of
unconfoundedness.

I Even weak positivity has severe consequences.
I We can gauge the influence of unobservable confounders using

sensitivity analysis.
I It shows how sensitive our estimates are to the correlations

between the unobservable confounders with the outcome and
the treatment.
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Non-compliance

I So far, we have assumed that subjects in an experiment always
comply with the treatment assignment.

I But this is often not the case.
I Patients want to get the treatment in medical experiments.
I People may not adopt the treatment due to social pressure.
I Non-compliance can occur in one group (one-sided) or both

groups (two-sided).
I If so, treatment assignment Zi will differ from the actual

treatment status Di .
I What quantity can we estimate in such a scenario? How do we

estimate it?
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Intention-to-treat effect

I Consider a classical randomized experiment with the outcome
Yi , the treatment assignment Zi ∈ {0, 1}, and the treatment
status Di ∈ {0, 1}.

I Zi is randomly assigned but Di is not.
I We can still identify the intention-to-treat (ITT) effect defined

as τITT = E [Yi |Zi = 1]− E [Yi |Zi = 0].
I It can be estimated via the Horvitz-Thompson or the Hajek

estimator.
I The ITT effect equals the ATE when there is perfect

compliance.
I Whether this estimand makes sense depends on the context.
I Are we interested in the effect of a policy or its efficacy?
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Local average treatment effect
I It is natural to assume that Di ’s value can be affected by Zi .
I We can define the potential outcomes for Di :

Di =
{

Di(1) if Zi = 1,
Di(0) if Zi = 0.

I There are four possibilities:

(Di(0),Di(1)) =


(1, 1),
(0, 1),
(0, 0),
(1, 0).

I We assume that these responses are decided by the nature of
these units rather than the received assignment.

I E.g., Do you believe that there are microchips in the vaccine?

5 / 22



Local average treatment effect

I The efficacy of a treatment is decided by the effect on those
who are encouraged to take it: Di(1) = 1 > Di(0) = 0.

I We call them “compliers” and the effect on them the local
average treatment effect (LATE):

τLATE = E [τi |Di(1) > Di(0)].

I The LATE does not equal to the ATE and is defined on a
sub-population.

I That’s why it is “local.”
I It is the expectation of τi conditional on the type of i .
I The type of a unit may differ across experiments but may not

be affected by treatment assignment.
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Principal strata

I There are three other possible types in the sample:
always-takers (Di(1) = Di(0) = 1), never-takers
(Di(1) = Di(0) = 0), and defiers (Di(1) = 0 < Di(0) = 1).

I It is impossible to identify the effect on the always-takers or
never-takers (why?).

I We call these types “principal strata.”
I This is a very general concept in causal inference.
I In medical trials, we have patients who can always survive over

the experimental period, who can never survive, who can
survive only after taking the treatment, and who cannot survive
only after taking the treatment.

I In survey experiments, we have respondents who will always fill
the survey, who will never fill the survey, who will fill the survey
only if treated, and who will fill the survey only if under control.
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Principal strata

I We cannot tell which type each unit belongs to as we cannot
observe their responses under different assignments.

I The table below shows all the possibilities for each combination
of (Zi ,Di):

Values Di = 0 Di = 1

Zi = 0 Never-taker/Complier Always-taker/Defier
Zi = 1 Never-taker/Defier Always-taker/Complier

I If you do not take vaccine when you are under control
(Zi = 0,Di = 0), you can be either a never-taker or a complier.
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Assumptions for identifying the LATE

I Nevertheless, it is still possible to identify the LATE under
certain assumptions.

I We utilize the exogeneity of Zi , which is also known as an
instrumental variable (IV) or instrument.

I Assumption 1 (random assignment):

Zi ⊥ {Yi(1),Yi(0)},
ε < P(Zi = 1) < 1− ε.

I This is guaranteed by experimental design and not testable.
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Assumptions for identifying the LATE

I Assumption 2 (exclusion restriction):

Yi(Di ,Zi) = Yi(Di).

I It means that Zi affects the outcome only through Di .
I In theory, Yi ’s value could be affected by Zi .
I E.g., being in the treatment group makes you feel optimistic

about your health.
I Or, being in the treatment group makes you less cautious in

your daily life.
I It is not testable as well.
I But we can make it more plausible via better designs (e.g.,

double-blind with a placebo treatment).
I More problematic in observational studies.
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Assumptions for identifying the LATE

I Assumption 3 (first stage):

Cov(Zi ,Di) 6= 0.

I It means that the assignment does affect the actual treatment
status.

I We can test it by checking the correlation between Zi and Di .
I The correlation reflects the proportion of individuals whose

treatment status are affected by the assignment (compliers and
defiers).

I An instrument is weak if the correlation coefficient is
sufficiently small.

I Weak instruments lead to suspicious estimates.
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Assumptions for identifying the LATE

I Assumption 4 (monotonicity): Di(1) ≥ Di(0).
I It excludes the existence of defiers from the sample.
I It seems natural in many scenarios but not so in others.
I But there are mavericks in the world. . .
I Assumptions 3 and 4 suggest that there is a non-negligible set

of compliers.
I We can test exclusion restriction and monotonicity together

(later).
I If the other direction is true, we just need to redefine the

treatment.
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Identify LATE

I Under motononicity, we have

Values Di = 0 Di = 1

Zi = 0 Never-taker/Complier Always-taker
Zi = 1 Never-taker Always-taker/Complier

I Therefore, we can calculate the proportion of never-takers
(qn = P(Di = 0|Zi = 1)) and always-takers
(qa = P(Di = 1|Zi = 0)).

13 / 22



Identify LATE

I From random assignment, we know that qn, qa, qc are roughly
the same in the treatment group and the control group.

I Knowing qn and qa, it is easy to calculate qc :

qc = P(Di = 1|Zi = 1)− P(Di = 1|Zi = 0)
= P(Di = 0|Zi = 0)− P(Di = 0|Zi = 1)
= E [Di |Zi = 1]− E [Di |Zi = 0]
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Identify LATE

I Suppose we have 200 individuals in an experiment, 100 treated
and 100 under control:

Values Di = 0 (110) Di = 1 (90)

Zi = 0 (100) 80 20
Zi = 1 (100) 30 70

I We can see that qn = 30/100 = 0.3, qa = 20/100 = 0.2.
I We also know that qn + qc = 0.8, qa + qc = 0.7.
I Obviously, qc = 0.5.
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Identify LATE

I Exclusion restriction indicates that all the effects on Yi are
caused by Di rather than Zi .

I We know the total effect of the treatment is
τITT = E [Yi |Zi = 1]− E [Yi |Zi = 0].

I The effect on the compliers, or the LATE, equals to

τLATE = τITT
qc

= E [Yi |Zi = 1]− E [Yi |Zi = 0]
E [Di |Zi = 1]− E [Di |Zi = 0] .

I The assumption of first stage ensures that the denominator is
non-zero.
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Estimate LATE

I In practice, we estimate the LATE using its sample analogue:

τ̂Wald =
1

N1

∑N
i=1 YiZi − 1

N0

∑N
i=1 Yi(1− Zi)

1
N1

∑N
i=1 DiZi − 1

N0

∑N
i=1 Di(1− Zi)

.

I This is called the Wald estimator.
I It is the ratio of two estimates.
I Hence, the Wald estimator is biased.
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Inference on LATE

I We already know the property of each Hajek estimator.
I It is consistent and and asymptotically normal.
I We can similarly derive the distribution of the Wald estimator

through linearization.
I Let τ̂Y = 1

N1

∑N
i=1 YiZi − 1

N0

∑N
i=1 Yi(1− Zi) and

τ̂D = 1
N1

∑N
i=1 DiZi − 1

N0

∑N
i=1 Di(1− Zi).

I We know that
√

N(τ̂Y − τITT )→ N (0, σ2
Y )

√
N(τ̂D − qc)→ N (0, σ2

D)
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Inference on LATE

I Then,
√

N(τ̂Wald − τLATE ) =
√

N
(
τ̂Y
τ̂D
− τITT

qc

)
≈
√

N(τ̂Y − τITT )
qc

− τITT
√

N(τ̂D − qc)
q2

c
→ N (0, σ2

Wald)

I The weighted average of two normal distributions is still a
normal distribution.

I Hence, τ̂Wald is consistent and asymptotically normal.

19 / 22



Application

## The LATE is 1.999

## Estimate from the Wald estimator is 1.987
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Better LATE than nothing

I Econometricians often criticize LATE for not capturing any
“deep parameters” (Deaton 2009; Heckman and Urzua 2010).

I The values of principal strata effects vary across experiments.
I Nevertheless, LATE is the best we can obtain without more

structural assumptions.
I We can generalize the LATE to the ATE by modeling the

non-compliance behavior.
I It is always important to understand the effect on those whose

behavior will be affected by the policy (Imbens 2010).
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